# GE Measurement & Control

# Ультразвуковая дефектоскопия



# USM Go USM Go+ Техническое описание и руководство по эксплуатации

Идентификатор № 49 155

Данное издание 6 (02/2013) распространяется на следующие версии программного обеспечения:

USM Go: 2.08 (6 марта 2013 г.)

USM Go+: 2.08 (28 мая 2013 г.)

Версия программного обеспечения и серийный номер прибора указаны на втором операционном уровне (CONFIG2 - ABOUT) © GE Sensing & Inspection Technologies GmbH | Техническое содержание может изменяться без уведомления.





Для переключения между первым и вторым операционным уровнем:

USM Go: Удерживайте джойстик в нажатом положении в течение 2 секунд.

USM Go+: Удерживайте центральную клавишу клавишной панели в нажатом положении в течение 2 секунд.



## Первый операционный уровень (Опции)

Для переключения между первым и вторым операционным уровнем:

USM Go: Удерживайте джойстик в нажатом положении в течение 2 секунд.

USM Go+: Удерживайте центральную клавишу клавишной панели в нажатом положении в течение 2 секунд.

| MEMO/HDR              | FILENAME     | REPORT         | VIDEO       |
|-----------------------|--------------|----------------|-------------|
| HEADER EDIT           | FILENAME     | IMAGE IN REPOR | SOURCE/DEST |
| <new header=""></new> | FILES        | YES            | MEMORY      |
| MEMO EDIT             | ACTION       | PARAM IN REPOR | FILENAME    |
| <new memo=""></new>   | STORE REPORT | YES            | UID         |
| MEMO IN REPORT        | enter        | PARAMETERS     | MODE        |
| NO                    |              | SUMMARY        | REPLAY      |
| HDR IN REPORT         | DIRECTORY    |                | ENTER       |
| NO                    | GUI          |                |             |
| ELES EVAL             | dB REF CONF  | igi confige co | NEIG3       |

# Второй операционный уровень

| EVALMODE     | TRIG        | RESULTS       | RESULTS2  |
|--------------|-------------|---------------|-----------|
| EVAL MODE    | PROBE ANGLE | READING 1     | MODE      |
| dB REF       | 45.0        | A%A           | SMALL     |
|              | 1.00 (K)    |               |           |
| COLOR LEG    | THICKNESS   | READING 2     | READING 5 |
| OFF          | 50.00 mm    | SA            | A%A       |
|              |             |               |           |
| Magnify gate | X VALUE     | Reading 3     | READING 6 |
| GATE A       | 0.00 mm     | A%E           | A%B       |
|              |             |               |           |
| AGT          | O-DIAMETER  | Reading 4     | LARGE     |
| OFF          | FLAT        | SB            | SA        |
|              |             |               |           |
| FILES EVAL   | dB REF CONF | IG1 CONFIG2 C | ONFIG3    |

| SETUP      |        |         |           |         |    |
|------------|--------|---------|-----------|---------|----|
| MODE       |        |         |           |         |    |
| OFF        |        |         |           |         |    |
|            |        |         |           |         |    |
| REFERENCE  |        |         |           |         |    |
| (NO REF)   |        |         |           |         |    |
|            |        |         |           |         |    |
| RECORD     |        |         |           |         |    |
| (NO REF)   |        |         |           |         |    |
|            |        |         |           |         |    |
| DELETE REF |        |         |           |         |    |
|            |        |         |           |         |    |
|            |        |         |           |         |    |
| FILES EVAL | dB REF | CONFIG1 | CONFIG2 ( | CONFIG3 | 40 |

| CODE          |     | REGIO     | NAL      | ST      | ARTUP   |     | DIS       | SPLAY | 묘    |
|---------------|-----|-----------|----------|---------|---------|-----|-----------|-------|------|
| SERIAL NUMBER | 2   | LANGUAGE  |          | DATE    |         |     | COLOR     |       |      |
| USMG009100    | 154 |           | english  | 09      | . 01. 2 | 013 |           | SCHE  | 4E 3 |
| CODE          |     | UNITS     |          | TIME    |         | _   | GRID      |       |      |
|               |     |           | mm       |         | 11:     | 34  | GRID1     | WO RU | ILER |
| 000000        |     |           |          |         |         |     |           |       |      |
| CONFIRM       |     | DECIMAL   |          | ORIENTA | TION    |     | ASCAN (   | COLOR |      |
|               |     |           | PERIOD   | RIGH    | IT HAN  | DED |           | E     | BLUE |
| FCHO MAX      |     | DATE FORM | 1AT      | JOY COL | NTROL   | _   | BRIGHT    | IESS  |      |
|               | OFF | D         | .M.Y 24H | 501 001 |         | ON  | Criterini |       | 10   |
| FILES EV      | AL  | dB REF    | CONF     | IG1 CC  | DNFIG2  | CC  | NFIG3     |       |      |

| SETUP          | GATEMODE      | SETUP 2        | PULSER             |
|----------------|---------------|----------------|--------------------|
| FUNCTION 1     | gate a logic  | CAL REMINDER   | PULSER TYPE        |
| NONE<br>NONE   | NEGATIVE      | OFF            | SQUARE             |
| FUNCTION 2     | gate B logic  | CAL RESET      | PRF MODE           |
| FREEZE<br>COPY | POSITIVE      |                | AUTO LOW<br>400 Hz |
| ABOUT          | B START MODE  | USER GAIN STEP | PHANTOM PRF        |
| SHOW           | IP            | 10.0dB         | ON                 |
| ASCAN FILL     | OUTPUT SELECT | dB STEP        |                    |
| OFF            | A (-)         | 0.5            |                    |
| FILES EVAL     | dB REF CONF   | IGI CONFIG2 CO | NFIG3              |

#### FREEZE YEARLY CAL TOF in LAYER BEA FREEZE MODE DATE TOF in LAYER BEA STANDARD 01.01 OFF OFF ENVELOPE CAL REMINDER LAYER TYPE BW GAIN OFF OFF STANDARD 9.5dB ENVELOPE COLOR CAL RESET LAYER EDIT BLUE EDIT POWER SAVER 255 MIN FILES EVAL dB REF CONFIG1 CONFIG2 CONFIG3 •

| PARAM MODE  | Auto Gain Ctrl |                |       |
|-------------|----------------|----------------|-------|
| PARAM MODE  | CTRL MODE      |                |       |
| EXPERT      | OFF            |                |       |
|             |                |                |       |
| PARAM EDIT  | Max AMP.%      |                |       |
| ENTER       | 0              |                |       |
|             |                |                |       |
| PASSWORD    | MIN AMP.%      |                |       |
| ENTER       | 0              |                |       |
|             |                |                |       |
|             | NOISE LEVEL.%  |                |       |
|             | 0              |                |       |
|             |                |                |       |
| EVAL dB REF | CONFIG1 CONF   | IG2 CONFIG3 CO | NFIGA |

| -         |         |            |       |     |         |    |    |
|-----------|---------|------------|-------|-----|---------|----|----|
| DR SE     | TUP     | DR NAV     | /     |     |         |    |    |
| FILENAME  |         | TOP        |       |     |         |    |    |
| KNEW FIL  | Ð       |            | 1A    |     |         |    |    |
|           |         |            |       |     |         |    |    |
| CREATE    |         | BOTTOM     |       |     |         |    |    |
|           |         |            | 1A    |     |         |    |    |
|           |         |            |       |     |         |    |    |
| DR VIEW   |         | ADV DIRECT | ION   |     |         |    |    |
|           | OFF     |            | RIGHT |     |         |    |    |
|           |         |            |       |     |         |    |    |
| DR THICKN | IESS    |            |       |     |         |    |    |
|           | SBA     |            |       |     |         |    |    |
|           |         |            |       |     |         |    |    |
| dB REF    | CONFIG1 | CONFIG2    | CONF  | IG3 | CONFIG4 | DR | 41 |

Второй операционный уровень (продолжение)

# Иконки индикатора состояния

| Иконка            | Значение                                                                           | Иконка         | Значение                                                                                            |
|-------------------|------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|
|                   | Карта памяти SD установлена,<br>Мерцает при обращении устройства к карте памяти SD | N/             | Наклонный преобразователь 30° 90°, плоская поверхность, Отражение от задней стенки                  |
| *                 | Активирована фиксация (Заморозка), дисплей<br>"заморожен".                         | $(\mathbf{x})$ | Наклонный преобразователь 30°, криволинейная поверхность, отражение от внутренней поверхности трубы |
| ھر                | Активировано увеличение строба                                                     | Æ              | Наклонный преобразователь 80°, криволинейная поверхность, отражение от внешней поверхности трубы    |
| $\mathcal{N}$     | Отключено разделение генератора импульсов-приемника                                | <b></b> >      | Наклонный преобразователь 90°, поверхностная волна                                                  |
| $\sim$            | Включено разделение датчик импульсов-приемник                                      | Т              | Режим ДАК (DAC) = активизировано ВРУ (TCG)                                                          |
| $\leftrightarrow$ | Включено разделение генератора импульсов-приемника и настроено на теневой режим    | $\uparrow$     | Зафиксирован опорный эхо-сигнал АРД (DGS)                                                           |
| A                 | Активирована функция отсечения                                                     | Y              | Зафиксирован опорный эхо-сигнал АРД, потери при передаче > 0                                        |
| Aŧ                | Активировано автоматическое регулирование порога<br>строба AGT                     | Å              | Функция сопоставления с опорным сигналом dB REF активна                                             |
|                   |                                                                                    | Ü              | Напоминание о калибровке                                                                            |

### Индикаторы уровня заряда батареи

#### Иконка Значение



Уровень заряда батареи, оставшееся время работы в часах (приблизительное значение)

# 4h



Зарядное устройство/адаптер питания подсоединен, процент уровня заряда батареи (приблизительное значение)



Осторожно: Низкий уровень заряда батареи, оставшееся время работы в минутах (приблизительное значение)

### Функции клавишной панели



1 Увеличение уровня усиления в соответствии с шагом

2 Уменьшение уровня усиления в соответствии с шагом

3 Навигация по операционным уровням и группам функций

4 Функциональная клавиша 1, индивидуально настраиваемая

5 Функциональная клавиша 2, индивидуально настраиваемая

# Навигация по меню при помощи джойстика (USM Go) или клавишной панели (USM Go+)

| USM Go | USM Go+ | Функция                                                                        |
|--------|---------|--------------------------------------------------------------------------------|
|        |         | Навигация между функциональными группами, внесение поправок значений           |
|        |         | Навигация в рамках функциональной группы, внесение поправок значений           |
|        |         | Переключение между операционными уровнями (нажатие длительностью 2<br>секунды) |
|        |         |                                                                                |

## 0 Обзор

| Первый операционный уровень (основной)                                            | 0-3 |
|-----------------------------------------------------------------------------------|-----|
| Первый операционный уровень (опции)                                               | 0-4 |
| Второй операционный уровень                                                       | 0-5 |
| Второй операционный уровень (продолжение)                                         | 0-6 |
| Иконки индикатора состояния                                                       | 0-7 |
| Индикаторы уровня заряда батареи                                                  | 0-8 |
| Функции клавишной панели                                                          | 0-8 |
| Навигация по меню при помощи джойстика (USM Go) или<br>клавишной панели (USM Go+) | 0-9 |

## 1 Введение

| 1.1 Информация по технике безопасности             | 1-2 |
|----------------------------------------------------|-----|
| Функционирование батареи                           | 1-2 |
| Программное обеспечение                            | 1-2 |
| Неисправности/ошибки и особые условия эксплуатации | 1-3 |

| 1.2 | Важная информация об ультразвуковых<br>испытаниях1-3                                            |
|-----|-------------------------------------------------------------------------------------------------|
|     | Предварительные условия для проведения испытания соответствующими ультразвуковыми приборами 1-3 |
|     | Обучение оператора1-4                                                                           |
|     | Технические требования к проведению контроля 1-4                                                |
|     | Ограничения при контроле1-5                                                                     |
|     | Ультразвуковая толщинометрия1-5                                                                 |
|     | Влияние материала испытуемого объекта 1-5                                                       |
|     | Влияние колебаний температуры1-6                                                                |
|     | Измерение остаточной толщины стенки 1-6                                                         |
|     | Оценка дефектов по результатам ультразвукового контроля1-6                                      |
|     | Метод сканирования1-6                                                                           |
|     | Метод сравнения отраженных сигналов 1-7                                                         |
| 1.3 | Дефектоскоп USM Go1-8                                                                           |
|     | Версии приборов USM Go и USM Go+ 1-9                                                            |
|     | Опции 1-10                                                                                      |
|     | Особые характеристики прибора USM Go 1-11                                                       |
| 1.4 | Толщиномер DMS Go1-12                                                                           |
| 1.5 | Использование руководства по эксплуатации 1-12                                                  |

|   | 1.6 | Формы представления в данном руководстве1-      | 13  |
|---|-----|-------------------------------------------------|-----|
|   |     | Символы «Внимание» и «Примечание»1-             | 13  |
|   |     | Перечни1-                                       | 13  |
|   |     | Этапы выполнения процедур1-                     | 13  |
| 2 | Ста | андартная комплектация и принадлежности         |     |
|   | 2.1 | Стандартная комплектация                        | 2.2 |
|   | 2.2 | Дополнительные функции                          | 2-3 |
|   | 2.3 | Предустановленные наборы функций                | 2-4 |
|   | 2.4 | Рекомендуемые принадлежности                    | 2-5 |
| 3 | Пеј | рвый запуск                                     |     |
|   | 3.1 | Установка прибора                               | 3.2 |
|   | 3.2 | Питание                                         | 3-2 |
|   |     | Работа от зарядного устройства/адаптера питания | 3-2 |
|   |     | Работа с использованием батарей                 | 3-4 |
|   |     | Зарядка батарей                                 | 3-8 |

| 3.3 Подключение преобразователя 3-9                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.4 Установка карты памяти SD 3-10                                                                                                                                                                                                                                                                 |
| 3.5 Запуск USM Go 3-11                                                                                                                                                                                                                                                                             |
| Включение питания 3-11                                                                                                                                                                                                                                                                             |
| Выключение                                                                                                                                                                                                                                                                                         |
| Заводская установка по умолчанию (сброс)                                                                                                                                                                                                                                                           |
| Принципы управления                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                    |
| 4.1 Общее описание средств управления оператора 4-2                                                                                                                                                                                                                                                |
| <ul><li>4.1 Общее описание средств управления оператора 4-2</li><li>4.2 Экран дисплея</li></ul>                                                                                                                                                                                                    |
| <ul> <li>4.1 Общее описание средств управления оператора 4-2</li> <li>4.2 Экран дисплея</li></ul>                                                                                                                                                                                                  |
| <ul> <li>4.1 Общее описание средств управления оператора 4-2</li> <li>4.2 Экран дисплея</li></ul>                                                                                                                                                                                                  |
| 4.1       Общее описание средств управления оператора 4-2         4.2       Экран дисплея       4-3         Отображение А-развертки       4-3         Функции экрана дисплея       4-4         Усиление       4-5                                                                                  |
| 4.1 Общее описание средств управления оператора 4-2         4.2 Экран дисплея                                                                                                                                                                                                                      |
| 4.1       Общее описание средств управления оператора 4-2         4.2       Экран дисплея       4-3         Отображение А-развертки       4-3         Функции экрана дисплея       4-4         Усиление       4-5         Полоса измерений       4-5         Иконки индикатора состояния       4-6 |

| 4.3 | Навигация и функциональные клавиши4-7                   |
|-----|---------------------------------------------------------|
|     | Навигация4-7                                            |
|     | Функциональные клавиши4-7                               |
|     | Комбинации клавиш4-8                                    |
|     | Клавиша питания4-8                                      |
| 4.4 | Принципы работы4-9                                      |
|     | Операционные уровни4-9                                  |
|     | Выбор и установка функций4-9                            |
|     | Функция НОМЕ4-11                                        |
|     | Активация функций4-12                                   |
| 4.5 | Важные настройки по умолчанию4-13                       |
|     | Языковые настройки4-13                                  |
|     | Установка единиц измерения4-14                          |
|     | Десятичный разделитель4-14                              |
|     | Формат даты, дата и время4-15                           |
|     | Выбор ориентации прибора4-16                            |
| 4.6 | Настройки дисплея по умолчанию4-16                      |
|     |                                                         |
|     | Выбор цветовой схемы4-16                                |
|     | Выбор цветовой схемы4-16<br>Выбор цвета А-развертки4-17 |

|   |     | Настройка яркости                                                | 4-18         |
|---|-----|------------------------------------------------------------------|--------------|
|   | 4.7 | Сохранение настроек                                              | 4-19         |
|   |     | Возврат к настройкам<br>Отображение названия серии данных        | 4-21<br>4-22 |
| 5 | Эк  | сплуатация                                                       |              |
|   | 5.1 | Обзор функций                                                    | 5-2          |
|   |     | Функциональные группы первого операционного уровня               | 5-3          |
|   |     | Функциональные группы второго операционного уровня               | 5-4          |
|   | 5.2 | Настройка усиления                                               | 5-6          |
|   |     | Настройка шага приращения усиления в дБ                          | 5-6          |
|   | 5.3 | Назначение функциональных клавиш                                 | 5-8          |
|   | 5.4 | Установка диапазона отображения<br>(функциональная группа RANGE) | 5-10         |
|   |     | ДИАПАЗОН                                                         | 5-11         |
|   |     | ЗАДЕРЖКА ПРЕОБРАЗОВАТЕЛЯ                                         | 5-11         |
|   |     | СКОРОСТЬ                                                         | 5-12         |
|   |     | ЗАДЕРЖКА ОТОБРАЖЕНИЯ                                             | 5-13         |

| 5.5 Настройка генератора импульсов<br>(функциональная группа PULSER)  | 5-14 |
|-----------------------------------------------------------------------|------|
| НАПРЯЖЕНИЕ ГЕНЕРАТОРА ИМПУЛЬСОВ                                       | 5-14 |
| ЭНЕРГИЯ                                                               | 5-15 |
| ШИРИНА                                                                | 5-16 |
| ПОДАВЛЕНИЕ                                                            | 5-17 |
| РЕЖИМ ЧПИ (частота повторения импульсов)                              | 5-17 |
| 5.6 Настройка приемника<br>(функциональная группа RECEIVER)           | 5-19 |
| ЧАСТОТА                                                               | 5-19 |
| ВЫПРЯМЛЕНИЕ                                                           | 5-20 |
| Функция разделения генератора импульсов приемника (DUAL)              | 5-20 |
| YACTOTA                                                               | 5-21 |
| 5.7 Настройка стробов (функциональные группы стробов GATE A и GATE B) | 5-22 |
| Задачи стробов                                                        | 5-22 |
| Настройка строба A-START/B-START<br>(начальная точка строба)          | 5-23 |
| Настройка строба А-WIDTH/B-WIDTH<br>(ширина строба)                   | 5-23 |

|      | Настройка строба A-THRESHOLD/B-THRESHOLD                    |        |
|------|-------------------------------------------------------------|--------|
|      | (порог отклика и измерений строба)                          | . 5-24 |
|      | Режим отображения времени прохождения                       | E 25   |
|      |                                                             | . 3-23 |
|      | Начальная точка строба В                                    | . 5-27 |
|      | Автоматическая регулировка высоты строба                    | . 5-28 |
| 5.8  | Калибровка дефектоскопа USM Go                              | . 5-29 |
|      | Калибровка диапазона отображения                            | . 5-29 |
|      | Выбор точки измерения                                       | . 5-29 |
|      | Калибровка прямых и наклонных преобразователей              | . 5-30 |
|      | Калибровка с использованием двухэлементного                 |        |
|      | преобразователя                                             | . 5-34 |
| 5.9  | Проведение измерений                                        | . 5-37 |
|      | Общие примечания                                            | . 5-37 |
| 5.10 | 0 Измерение разницы эхо-сигнала отражателя и                |        |
|      | опорного эхо-сигнала в дБ<br>(функциональная группа dB REF) | 5-38   |
|      |                                                             |        |
|      | Регистрация опорного эхо-сигнала                            | . 5-39 |
|      | Удаление опорного эхо-сигнала                               | . 5-39 |
|      | Сравнение высоты эхо-сигналов                               | . 5-40 |

|                                                  | УВЕЛИЧЕНИЕ СТРОБ                                                                                                          |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 5-41                                             | Активация функции ув                                                                                                      |
| цией<br>5-42                                     | Автоматическое фикси<br>(фиксирование)                                                                                    |
|                                                  |                                                                                                                           |
| ых                                               | 5.16 Настройка экрана                                                                                                     |
| ых<br>5-45                                       | 5.16 Настройка экрана<br>Функция заполнения ц                                                                             |
| <b>ых</b><br><b>5-45</b><br>5-46                 | 5.16 Настройка экрана<br>Функция заполнения ц<br>эхо-сигналов на А-разв                                                   |
| <b>ых</b><br><b>5-45</b><br>5-46<br>5-47         | 5.16 Настройка экрана<br>Функция заполнения ц<br>эхо-сигналов на А-разв<br>Работа с включенной с                          |
| <b>ых</b><br><b>5-45</b><br>5-46<br>5-47<br>5-48 | 5.16 Настройка экрана<br>Функция заполнения ц<br>эхо-сигналов на А-раза<br>Работа с включенной с<br>наивысшего эхо-сигнал |

| 1 E | Зведение |
|-----|----------|
|-----|----------|

| ••••         | Анализ сварных швов<br>(функциональная группа AWS D1.1)5                                                                                                                                                                                                                                                                            | -41                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|              | Анализ сварных швов в соответствии со спецификацией<br>AWS D1.15                                                                                                                                                                                                                                                                    | 5-42                                                                                                  |
| 5.12         | Расчет положения дефекта при помощи наклонных<br>преобразователей5                                                                                                                                                                                                                                                                  | -45                                                                                                   |
|              | РЕГУЛИРОВКА УГЛА ПРЕОБРАЗОВАТЕЛЯ5                                                                                                                                                                                                                                                                                                   | -46                                                                                                   |
|              | ТОЛЩИНА5                                                                                                                                                                                                                                                                                                                            | 6-47                                                                                                  |
|              | НАСТРОЙКА СТРЕЛЫ ПРЕОБРАЗОВАТЕЛЯ5                                                                                                                                                                                                                                                                                                   | -48                                                                                                   |
|              | НАСТРОЙКА НАРУЖНОГО ДИАМЕТРА5                                                                                                                                                                                                                                                                                                       | -48                                                                                                   |
|              | НАСТРОЙКА ФОНА ОТРАЖЕННОГО СИГНАЛА5                                                                                                                                                                                                                                                                                                 | -49                                                                                                   |
| 5.13         | Определение угла ввода преобразователя5                                                                                                                                                                                                                                                                                             | 5-50                                                                                                  |
|              | ФУНЦИОНАЛЬНАЯ ГРУППА ФИКСАЦИИ ДИАПАЗОНОВ<br>ИСПЫТАНИЯ5                                                                                                                                                                                                                                                                              | 5-51                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |
| 5.14         | Включение дополнительных опций                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| 5.14         | Включение дополнительных опций<br>(модернизирование)5                                                                                                                                                                                                                                                                               | 5-52                                                                                                  |
| 5.14<br>5.15 | Включение дополнительных опций<br>(модернизирование)5<br>Настройка USM Go для испытаний5                                                                                                                                                                                                                                            | 5-52<br>5-53                                                                                          |
| 5.14<br>5.15 | Включение дополнительных опций<br>(модернизирование)                                                                                                                                                                                                                                                                                | -52<br>-53                                                                                            |
| 5.14<br>5.15 | Включение дополнительных опций<br>(модернизирование)                                                                                                                                                                                                                                                                                | <b>-52</b><br>-53                                                                                     |
| 5.14<br>5.15 | Включение дополнительных опций<br>(модернизирование)                                                                                                                                                                                                                                                                                | 5- <b>52</b><br>5- <b>53</b><br>5-58                                                                  |
| 5.14         | Включение дополнительных опций<br>(модернизирование)       5         Настройка USM Go для испытаний       5         Режим отображения времени прохождения сигнала<br>TOF MODE       5         Детектор шумовых эхо-сигналов       5         Конфигурирование полосы измерений       5         Увеличение изображения данных       5 | <b>-52</b><br><b>-53</b><br>-53<br>-58<br>-59                                                         |
| 5.14         | Включение дополнительных опций<br>(модернизирование)                                                                                                                                                                                                                                                                                | <b>5-52</b><br><b>5-53</b><br><b>5-58</b><br><b>5-59</b><br><b>5-62</b><br><b>5-62</b><br><b>5-64</b> |

|      | УВЕЛИЧЕНИЕ СТРОБА (распространение строба                                    | a). 5-65 |
|------|------------------------------------------------------------------------------|----------|
|      | Активация функции увеличения строба                                          | 5-66     |
|      | Автоматическое фиксирование А-развертки<br>(фиксирование)                    | 5-68     |
| 5.16 | Настройка экрана                                                             | 5-70     |
|      | Функция заполнения цветом областей<br>эхо-сигналов на А-развертке ASCAN FILL | 5-71     |
|      | Работа с включенной функцией отбора<br>наивысшего эхо-сигнала Echo Max       | 5-72     |
| 5.17 | Общие настройки                                                              | 5-73     |
|      | РЕЖИМ ОЦЕНКИ (EVAL)                                                          | 5-73     |
|      | Настройка логики строба                                                      | 5-74     |
|      | Выбор типа генератора импульсов                                              | 5-75     |
|      | Блокировка джойстика                                                         | 5-76     |
|      | Настройка предупреждающего сигнала                                           | 5-77     |
|      | Энергосберегающий режим                                                      | 5-79     |
|      | Функция TOF in LAYER (время прохождения<br>сигнала в слое)                   | 5-80     |
|      | Ослабление отраженного сигнала задней стенки (ВЕА)                           | 5-82     |
|      | Отображение огибающей кривой (ENVELOPE)                                      | 5-83     |
|      | Автоматическое управление коэффициентом усиления                             | 5-84     |

| Напоминание о калибровке                         | 5-86  |
|--------------------------------------------------|-------|
| Защита паролем                                   | 5-87  |
| 5.18 Дистанционно-амплитудная коррекция (DAC)    | 5-91  |
| Запись кривой ДАК                                | 5-92  |
| Регулировка ДАК                                  | 5-94  |
| Отключение оценки по ДАК                         | 5-95  |
| Удаление кривой ДАК                              | 5-96  |
| Редактирование точек ДАК                         | 5-96  |
| Добавление точек ДАК                             | 5-97  |
| Множественные ДАК                                | 5-97  |
| Испытание по AWS D1.1 в режиме ДАК/ВРУ           | 5-99  |
| Коррекция чувствительности                       | 5-99  |
| Оценка эхо-сигналов с помощью ДАК/ВРУ            | 5-100 |
| 5.19 Кривая ДАК согласно промышленному стандарту |       |
| Японии JIS Z3060-2002 (JISDAC)                   | 5-102 |
| Включение функции JISDAC (ДАК в соответствии с   |       |
| промышленными стандартами Японии)                | 5-102 |
| Запись кривой ДАК                                | 5-102 |
| Настройка функции дистанционно-амплитудной       |       |
| характеристики по промышленному стандарту        |       |
| Японии JISDAC                                    | 5-105 |
| Коррекция чувствительности                       | 5-106 |

| Отключение оценки JISDAC                    | 5-106 |
|---------------------------------------------|-------|
| Удаление кривой ДАК                         | 5-107 |
| Оценка эхо-сигналов с помощью ДАК           | 5-107 |
|                                             |       |
| 5.20 Кривая «амплитуда-расстояние» согласно |       |
| ЈВ/14730 и GB 11345 (CNDAC)                 | 5-109 |
|                                             |       |
| ОЦЕНКА С ИСПОЛЬЗОВАНИЕМ СМОАС               | 5 100 |
| а стандарту китая)                          | 5-109 |
| Стандарты и образцы                         | 5-110 |
| Включение оценки дистанционно-амплитудной   |       |
| характеристики по промышленному стандарту   |       |
| Китая CNDAC                                 | 5-111 |
| Запись кривой ДАК                           | 5-111 |
| Настройка функции дистанционно-амплитудной  |       |
| характеристики по промышленному стандарту   |       |
| Китая CNDAC                                 | 5-114 |
| Коррекция чувствительности                  | 5-115 |
| Настройка контрольных линий                 | 5-116 |
| Отключение оценки CNDAC                     | 5-116 |
|                                             |       |

| Удаление кривой ДАК               | . 5-117 |
|-----------------------------------|---------|
| Оценка эхо-сигналов с помощью ДАК | . 5-117 |

#### 5.21 Оценка в соответствии с методом АРД (DGS)5-119

| Использование АРД для измерений | 5-119 |
|---------------------------------|-------|
| Достоверность метода DGS        | 5-121 |

| Запуск оценки высоты эхо-сигнала в соответствии          | Сохра    |
|----------------------------------------------------------|----------|
| c DGS5-123                                               | в про    |
| Основные настройки для измерения АРД 5-123               |          |
| Запись базового эхо-сигнала и включение кривой АРД 5-125 | 6.2 Coxp |
| Блокировки, сообщения об ошибках 5-127                   | Созда    |
|                                                          |          |

| ы влокировки, сооощения оо ошиоках   | . 5-127 |
|--------------------------------------|---------|
| Затухание звука и коррекция передачи | . 5-128 |
| Использование множества кривых АРД   | . 5-128 |
| Отключение оценки АРД                | . 5-129 |
| Удаление базового эхо-сигнала АРД    | . 5-129 |
| Данные преобразователя               | . 5-130 |
| Наклонные преобразователи trueDGS    | . 5-133 |

#### 6 Документирование

| Протоколы испытаний                      | 6-2                                                                                                                                                                 |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Сохранение на втором операционном уровне | 6-2                                                                                                                                                                 |
| Отображение протоколов испытаний         | 6-4                                                                                                                                                                 |
| Печать протоколов испытаний              | 6-6                                                                                                                                                                 |
| Удаление протоколов испытаний            | 6-7                                                                                                                                                                 |
|                                          | Протоколы испытаний<br>Сохранение на втором операционном уровне<br>Отображение протоколов испытаний<br>Печать протоколов испытаний<br>Удаление протоколов испытаний |

|                                                           | Сохранение файлов А-развертки и параметров<br>в протоколе испытаний | 6-9                                                                                  |
|-----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 6.2                                                       | Сохранение заметок                                                  | . 6-10                                                                               |
|                                                           | Создание нового файла памятки                                       | . 6-10                                                                               |
|                                                           | Редактирование файла памятки                                        | . 6-11                                                                               |
|                                                           | Прикрепление файла заметки к протоколу испытаний                    | . 6-12                                                                               |
| 6.3                                                       | Сохранение заголовка протокола                                      | . 6-13                                                                               |
|                                                           | Создание нового файла заголовка                                     | . 6-13                                                                               |
|                                                           | Редактирование файла заголовка                                      | . 6-14                                                                               |
|                                                           | Прикрепление файла заголовка к протоколу испытаний.                 | . 6-15                                                                               |
|                                                           |                                                                     |                                                                                      |
| 6.4                                                       | Просмотр и хранение параметров                                      | . 6-16                                                                               |
| 6.4<br>6.5                                                | Просмотр и хранение параметров<br>Видео                             | . 6-16<br>. 6-17                                                                     |
| 6.4<br>6.5                                                | Просмотр и хранение параметров<br>Видео                             | <b>. 6-16</b><br>. <b>6-17</b><br>. 6-17                                             |
| 6.4<br>6.5                                                | Просмотр и хранение параметров<br>Видео                             | . <b>6-16</b><br>. <b>6-17</b><br>. 6-17<br>. 6-19                                   |
| 6.4<br>6.5<br>6.6                                         | Просмотр и хранение параметров<br>Видео                             | . <b>6-16</b><br>. <b>6-17</b><br>. 6-17<br>. 6-19<br>. <b>6-21</b>                  |
| <ul><li>6.4</li><li>6.5</li><li>6.6</li><li>6.7</li></ul> | Просмотр и хранение параметров<br>Видео                             | . <b>6-16</b><br>. <b>6-17</b><br>. 6-17<br>. 6-19<br>. <b>6-21</b><br>. <b>6-22</b> |
| 6.4<br>6.5<br>6.6<br>6.7                                  | Просмотр и хранение параметров<br>Видео                             | . 6-16<br>. 6-17<br>. 6-19<br>. 6-21<br>. 6-22<br>. 6-23                             |
| 6.4<br>6.5<br>6.6<br>6.7                                  | Просмотр и хранение параметров<br>Видео                             | . 6-16<br>. 6-17<br>. 6-19<br>. 6-21<br>. 6-22<br>. 6-23<br>. 6-25                   |

|   |           | Удаление данных                                 |   |
|---|-----------|-------------------------------------------------|---|
|   |           | Предварительный просмотр А-развертки            |   |
|   |           | Просмотр файлов регистрации данных              |   |
|   |           | Выключение/ включение таблицы 6-29              | 9 |
| 7 | Tex       | кническое обслуживание и уход                   |   |
|   | 7.1       | Уход за измерительным прибором7-2               |   |
|   | 7.2       | Уход за батареей7-2                             |   |
|   |           | Уход за батареей7-2                             |   |
|   |           | Зарядка батарей7-3                              |   |
|   | 7.3       | Техническое обслуживание7-3                     |   |
|   | 7.4       | Обновление программного обеспечения прибора 7-4 |   |
|   |           | Загрузка файлов с обновлением                   |   |
|   |           | Установка обновления7-5                         |   |
| 8 | Ин<br>уст | терфейсы подключения и периферийные<br>гройства |   |
|   | 8.1       | Интерфейсы подключения 8-2                      |   |
|   |           | Краткий обзор 8-2                               |   |
|   |           | Интерфейс USB 8-3                               |   |

|     | Служебный интерфейс ((Mini RS232-C)                                                                                         | 8-3          |
|-----|-----------------------------------------------------------------------------------------------------------------------------|--------------|
| 8.2 | Периферийные устройства                                                                                                     | 8-4          |
| Пр  | иложение                                                                                                                    |              |
| 9.1 | Расположение функций в группах                                                                                              | 9-2          |
| 9.2 | Декларация Соответствия ЕС                                                                                                  | 9-11         |
| 9.3 | Адреса производителя/сервисных служб                                                                                        | 9-11         |
| 9.4 | Соблюдение норм охраны окружающей среды                                                                                     | 9-13         |
|     | Директива WEEE (Директива EC об отходах<br>электрического и электронного оборудования)<br>Утилизация аккумуляторных батарей | 9-13<br>9-14 |
| 9.5 | Директивы по переработке отходов                                                                                            | 9-16         |
|     | Краткий обзор                                                                                                               | 9-16         |
|     | Материалы, подлежащие раздельной утилизации                                                                                 | 9-19         |
|     | Прочие материалы и компоненты                                                                                               | 9-22         |
|     | Данные по переработке USM Go                                                                                                | 9-29         |

## 10 Технические характеристики

| 10.1 | Технические характеристики приборов<br>USM Go и USM Go+ |       |
|------|---------------------------------------------------------|-------|
|      | Экран монитора                                          | 10-2  |
|      | Дисплей                                                 |       |
|      | Соединители                                             |       |
|      | Память                                                  |       |
|      | Генератор импульсов                                     |       |
|      | Приемник                                                |       |
|      | Стробы                                                  |       |
|      | Память                                                  |       |
|      | Условия эксплуатации                                    |       |
|      | Защита                                                  |       |
|      | Дополнительные возможности                              |       |
| 10.2 | Спецификации согласно EN 12668                          | 10-11 |

## 11 Алфавитный указатель

# Введение 1

#### 1.1 Информация по технике безопасности

Прибор USM Go был разработан и испытан в соответствии с DIN EN Для эксплуатации прибора USM Go вместе с батареей рекомендуется 61010-1: 2011-07, Требования безопасности для электрического использовать соответствующую литий-ионную батарею. Данная батарея должна использоваться только для работы от автономного измерительного, контролирующего и лабораторного оборудования, источника питания (батареи). и был выпущен предприятием в исправном техническом состоянии.

Для поддержания прибора в исправном состоянии и обеспечения Можно зарядить литий-ионную батарею непосредственно в приборе со или с помощью внешнего зарядного устройства. Если литий-ионная эксплуатации обязательно безопасности ознакомьтесь следующей инструкцией по технике безопасности перед началом работы с прибором.

#### ВНИМАНИЕ

Также см. характеристики источника питания в Главе 3.2 Питание, USM Go - это прибор для испытания материалов. Не стр. 3-2. Также см. характеристики батарей в Главе 7.2 Уход за допускается использование в медицинских и любых батареей, стр. 7-2. прочих целях!

#### Программное обеспечение

питания, подключенного к электросети.

Функционирование батареи

Прибор может использоваться только в условиях производственной среды.

Прибор USM Go является водонепроницаемым по стандарту IP67. приборами с программным управлением следует убедиться, что Прибор может работать как от подходящей литий-ионной батареи, необходимые операции работают без сбоев во всех предусмотренных так и от внешнего зарядного устройства/адаптера питания. Зарядное для них комбинациях. устройство/адаптер питания соответствуют классу II требований по электробезопасности.

С учетом сегодняшнего развития техники, программное обеспечение полностью никогда не застраховано от ошибок. До начала работы с

батарея установлена, зарядка начинается автоматически, как только в

разъем USM Go вставлен штекер зарядного устройства/адаптера

В случае возникновения каких-либо вопросов по использованию оборудования, свяжитесь ближайшим испытательного С представительством GE Sensing & Inspection Technologies.

#### Неисправности/ошибки и особые условия 1.2 Важная информация об ультразвуковых эксплуатации испытаниях

Если есть причина полагать, что безопасная эксплуатации прибора Ознакомьтесь со следующей информацией перед использованием USM Go больше невозможна, отключите прибор от сети и USM Go. Необходимо понимать и выполнять данные инструкции во предупредите его случайное включение. Извлеките литий-ионную избежание при работе с прибором ошибок, которые могли бы батарею. Привести к неправильными результатам испытания. Такие неправильные результаты испытаний могут привести к нанесению

Безопасная эксплуатация невозможна в случае:

• если прибор имеет явные повреждения,

• возникают сбои в работе прибора,

• после длительного хранения в неблагоприятных условиях (например, при экстремальных температурах и/или повышенной влажности воздуха или в условиях возникновения коррозии),

• после значительных повреждений во время транспортировки.

#### Предварительные условия для проведения испытания соответствующими ультразвуковыми приборами

вреда здоровью или повреждениям имущества.

Данное руководство содержит основную информацию по эксплуатации испытательного оборудования. Кроме того, существует еще ряд факторов, влияющих на результаты испытания. Описание этих факторов выходит за рамки данного руководства. Три наиболее важных условия для безопасного и надежного ультразвукового исследования:

• Обучение оператора

• Знание специфических требований и пределов проведения технических испытаний

• Подбор соответствующего оборудования для проведения испытаний

| Обучение оператора                                                                                                                                                                                                                                                                                                                                                                                                                                       | Технические требования к проведению                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Работа с ультразвуковым испытательным прибором требует<br>соответствующей подготовки персонала в области методов<br>ультразвуковых испытаний.                                                                                                                                                                                                                                                                                                            | <b>ИСПЫТАНИЙ</b><br>Каждое ультразвуковое испытание связано с определенными<br>техническими требованиями. Наиболее важными из них являются:                                                                                                                                                                                       |
| Качественная подготовка включает достаточные знания о:<br>• теории распространения звука,<br>• влиянии испытуемого материала на скорость распространения<br>звука.                                                                                                                                                                                                                                                                                       | <ul> <li>определение объема испытания,</li> <li>выбор соответствующей методики,</li> <li>учет свойств материала,</li> <li>определение предельных значений для регистрации и оценки.</li> </ul>                                                                                                                                    |
| <ul> <li>поведении звуковых волн на границах между различными материалами,</li> <li>прохождении звукового пучка,</li> <li>влиянии затухания звука в объекте испытания и влиянии характеристик поверхности объекта испытания.</li> </ul>                                                                                                                                                                                                                  | Лица, ответственные за испытания должны убедиться, что инспектор<br>полностью проинформирован об этих требованиях. Наилучшим<br>источником такой информации является опыт работы с подобными<br>объектами испытания. Также важно, чтобы инспектор четко и<br>полностью понимал соответствующие испытаниям технические<br>условия. |
| результатам испытаний с непредсказуемыми последствиями.<br>Например, можно связаться с компаниями или организациями,<br>занимающимися неразрушающим контролем в Вашей стране (DGZfP<br>в Германии, ASNT в США), а также GE Sensing & Inspection<br>Тесhnologies для получения информации относительно<br>существующих возможностей обучения инспекторов по<br>ультразвуковым испытаниям, а также информацию по квалификации<br>и получению сертификатов. | Компания GE Sensing & Inspection Technologies регулярно проводит<br>специализированные курсы в области ультразвуковых испытаний.<br>Информация о проведении таких курсов предоставляется по запросу.                                                                                                                              |

#### Ограничения при контроле

Информация, полученная в результате ультразвуковых испытаний, имеет отношение только к тем частям объекта испытаний, которые непосредственно находились в области ЗВУКОВОГО пучка используемого преобразователя.

Любые выводы, основанные на результатах испытанных частей, Если материал испытуемого объекта имеет неоднородную структуру, должны с особой осторожностью переноситься на неиспытанные то в разных областях объекта ультразвук может распространяться с части объекта испытаний.

Получение таких выводов, как правило, возможно только в случаях, достигается когда имеется большой опыт и доступны надежные методы сбора распространения ультразвука в котором соответствует средней статистических данных.

Звуковой пучок может полностью отражаться от граничных поверхностей в объекте испытаний, поэтому дефекты и точки Если ожидаются значительные изменения скорости звука, то отражения, находящиеся глубже, остаются невыявленными. Поэтому калибровка прибора должна проводиться в соответствии с важно убедиться, что все участки, подлежащие испытанию в объекте фактическими значениями скорости звука через короткие интервалы испытания, охвачены звуковым пучком.

#### Ультразвуковая толщинометрия

Все ультразвуковые измерения толщины стенки основаны на измерении времени полета звукового пучка. Условием достаточной точности измерений является постоянство скорости ультразвука в контролируемом изделии. В стальных испытуемых объектах, даже с различными легирующими компонентами, это условие, в основном, выполняется. Изменения скорости звука настолько незначительны,

что они имеют значение только для высокоточных измерений. В других материалах, например, в цветных металлах или пластмассах. изменения скорости звука могут быть еще большими и, таким образом, иметь негативное влияние на точность измерения.

#### Влияние материала испытуемого объекта

различной скоростью. Для калибровки диапазона скорости следует принять во внимание среднее значение скорости звука. Это образца-ступеньки, при помощи скорость скорости распространения ультразвуковых волн в испытуемом объекте.

времени. Несоблюдение этого условия может повлечь искажение результатов измерения толщины.

#### Влияние колебания температуры.

Скорость звука в испытуемом объекте также зависит и от температуры материала. Это может стать причиной ошибок в В современной практике испытаний существует два различных измерениях, если прибор был откалиброван на холодном образце- метода оценки дефектов: ступеньке, а затем использовался на испытуемом объекте с более высокой температурой. Избежать таких ошибок в измерениях можно Если диаметр звукового пучка меньше протяженности дефекта, то путем изменения температуры эталонного блока, используемого для калибровки, или принимая во внимание температурное воздействие, площадь. основанное на поправочном коэффициенте, полученном из опубликованных таблиц.

#### Измерение остаточной толщины стенки

Измерение остаточной толщины стенки в узлах установок, например, трубопроводах, сосудах и корпусах реакторов всех типов, Метод сканирования границ дефекта подверженных коррозии или эрозии, требует применения измерительных приборов, идеально подходящих для контроля, и Чем меньше диаметр звукового пучка датчика, тем более точно особой осторожности при работе с преобразователем. быть проинформированы Инспекторы всегда должны соответствующих номинальных значениях толщины стенки И возможных ее изменениях.

#### Оценка дефектов результатам ПО ультразвукового контроля

звуковым пучком сканируют границы дефекта и определяют его

Однако если диаметр ультразвукового пучка больше протяженности дефекта, то сравнивают максимальную амплитуду отраженного от дефекта сигнала с максимальной амплитудой отражения от искусственного дефекта, используемого для сравнения.

методом сканирования будут определены границы дефекта (а вместе <sup>о</sup> с тем и его площадь). При относительно широком звуковом пучке площадь дефекта, определенная при сканировании, может существенно отличаться от ее реальных размеров. Поэтому, выбирая преобразователь, следует обращать внимание на то, чтобы диаметр звукового пучка в месте выявления дефекта был достаточно малым.

#### Метод сравнения отраженных сигналов

Сигнал, отраженный от небольшого, естественного дефекта, обычно меньше отраженного сигнала от искусственного дефекта, например, дискового отражателя того же размера. Это объясняется, например, неровностями поверхности естественного дефекта или тем, что звуковой пучок не падает на нее под прямым углом.

Если не принимать это во внимание при оценке естественных дефектов, то существует вероятность их неправильной оценки.

В случае очень неровных или трещиноватых дефектов, например, усадочные раковины в отливке, звуковое рассеяние, имеющее место на границе поверхности дефекта может быть настолько сильным, что не возникнет ни один отраженный сигнал. В этом случае необходимо выбрать другой метод обнаружения, например, с использованием степени ослабления донного сигнала при оценке.

При контроле больших деталей важную роль играет зависимость величины эхо-сигнала от пути прохождения ультразвука. При этом следует выбирать такие искусственные дефекты, для которых зависимость величины эхо-сигнала от глубины залегания совпадала бы максимально возможным образом с аналогичной зависимостью для естественных дефектов, подлежащих оценке.

Ультразвуковые волны в любом материале подвержены затуханию.. Данное затухание звука весьма незначительно у, например, деталей, выполненных из мелкозернистой стали, а также у многочисленных мелких деталей, выполненных из прочих материалов. Однако, если звуковая волна проходит большие расстояния через материал, то даже при малом коэффициенте затухания суммарное затухание может быть значительным. В этом случае возникает опасность того, что отраженные сигналы от естественных сигналов будут слишком малы. Поэтому необходимо всегда проводить оценку влияния затухания на результаты оценки и при необходимости учитывать ее.

, Если испытуемый объект имеет необработанную поверхность, часть о излученной энергии звука рассеивается на поверхности и не о участвует в испытании. Чем больше начальное рассеяние, тем о меньше отраженные сигналы дефекта, и тем больше происходит и ошибок в результатах оценки.

Поэтому важно учитывать действие поверхности испытуемого объекта на высоту отраженных сигналов (коррекция передачи).

| 1.3 Дефектоскоп USM Go                                                                                                                                                                                                                                                                                                                                                            | Проверка рельса                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USM Go является легким и компактным ультразвуковым дефектоскопом, который особенно удобен для:                                                                                                                                                                                                                                                                                    | <ul> <li>Высокая частота повторения импульсов (до 2000 Гц)</li> <li>Малый вес 850 г (1.87 фт)</li> <li>Малый размер и эргономичность</li> </ul>                                                                                                   |
| <ul> <li>обнаружения и оценки дефектов материала,</li> <li>измерения толщины стен,</li> <li>сохранения и документирования результатов испытания.</li> </ul> Ввиду особенностей конструкции прибор USM Go может применяться для обнаружения практически любых дефектов в разнообразных сферах промышленности, включая авиакосмическую промышленность, производство электроэнергии, | <ul> <li>Проверка композитных материалов</li> <li>РЧ-дисплеи</li> <li>2 строба А и В</li> <li>Строб В инициируется событием в стробе А</li> <li>Для применения в условиях, требующих большей</li> </ul>                                           |
| автомобилестроение, а также нефтяную и газовую промышленность.<br>К ним относятся:                                                                                                                                                                                                                                                                                                | точности                                                                                                                                                                                                                                          |
| <b>Проверка сварных швов</b><br>• Тригонометрические проекции<br>• Американская ассоциация сварщиков (AWS)<br>• ДАК (DAC)<br>• АРД (DGS)                                                                                                                                                                                                                                          | <ul> <li>Узкополосные фильтры</li> <li>Цифровые усилители с низким уровнем шумов</li> <li>Дополнительные генераторы прямоугольного импульса</li> <li>ДАК (ВРУ (ТСС)) с уклоном 120 дБ/мкс</li> <li>Затухание донного эхо-сигнала (ВЕА)</li> </ul> |
| Проверка кованых и литых образцов.                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |
| <ul> <li>Ручная настройка частоты повторения импульсов</li> <li>Детектор шумовых эхо-сигналов</li> <li>АРД (DGS)</li> </ul>                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |

## Версии приборов USM Go и USM Go+

Для навигации, изменения настроек и внесения поправок в значения в приборе **USM Go используется джойстик.** 

Данные функции осуществляются посредством пяти клавиш на клавишной панели прибора **USM Go+.** Клавиши со стрелками клавишной панели соответствуют движению ручки управления в аналогичном направлении, нажатие на центральную клавишу равносильно нажатию на ручку управления.

#### USM Go



#### USM Go+



| Варианты                                                                                                                     | USM Go DGS                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Различные варианты усовершенствования базовых функций прибора<br>USM Go могут выть инициированы при помощи специального кода | • Оценка амплитуды АРД (DGS) в соответствии с EN 1712                                                        |
|                                                                                                                              | USM Go с встроенным устройством регистрации                                                                  |
| USM Go Базовый вариант                                                                                                       | данных                                                                                                       |
| <ul> <li>Базовая версия прибора, для универсальных ультразвуковых<br/>тестовых заданий.</li> </ul>                           | <ul> <li>Фиксация и документирование значений измерений в формате<br/>линейных и сеточных файлов.</li> </ul> |
| USM Go AWS                                                                                                                   | USM Go с генератором прямоугольного импульса                                                                 |
| • Оценка амплитуды в соответствии с AWS D1.1 для проверки качества сварных швов.                                             | • Позволяет осуществлять точное регулирование характеристик изначального импульса                            |
|                                                                                                                              | • Настройка напряжения 120 300 В с шагом в 10 В                                                              |
| USM Go DAC                                                                                                                   | • Настройка длительности импульса 30 500 нс с шагом в 10 нс                                                  |
|                                                                                                                              | • Частота повторения импульсов                                                                               |
| • Оценка амплитуды ДАК (DAC) при помощи 16 точек согласно EN                                                                 | • 3G (CTp00 C)                                                                                               |
| 73060                                                                                                                        |                                                                                                              |
|                                                                                                                              |                                                                                                              |

• Динамическая ДАК (ВРУ) 110 дБ • ДАК (Затухание донного эхо-сигнала) уклон 120 дБ/мкс

| • отображение семи измеряемых показаний по выбору пользователя<br>• цветное отображение стробов и соответствующих показаний для<br>в верхней части А-развертки, один из которых отображаются в<br>увеличенном виде или четыре из которых отображаются в |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### 1.4 DMS Go

Прибор USM Go использует сходный с портативным толщиномером DMS Go принцип действия.

Можно быстро и легко усовершенствовать прибор USM Go при значениях всегда указываются. помощи толщиномера DMS Go посредством обновления программного обеспечения. В таком случае будут доступны два Перед началом работы с прибором необходимо ознакомиться с прибора в одном корпусе. При включении прибора можно выбрать тот инструмент, который необходимо использовать (см. Главу 3.5 Запуск USM Go, стр. 3-11).

Для DMS Go доступно отдельное руководство по эксплуатации В дальнейшем это позволит избежать ошибок и неисправностей Поэтому функции DMS Go не описаны в руководстве по эксплуатации прибора USM Go.

#### 1.5 Использование руководства ПО эксплуатации

Данное руководство по эксплуатации применяется ко всем версиям прибора USM Go. Любые отличия в функциях или регулировочных

главами 1, 3 и 4. В них содержится информация о необходимой подготовке прибора, описание всех пояснений и дисплеев экрана, а также объяснение принципа работы.

прибора, а также наиболее полно использовать все функциональные возможности прибора.

См. технические характеристики прибора в Главе 10 Спецификации.

# 1.6 Формы представления в данном Перечни представлены в следующем виде: Для облегчения работы с руководством все этапы эксплуатации, перечни и особые примечания всегда излагаются аналогично. Это позволяет быстрее находить необходимую информацию.

#### Этапы выполнения процедур

- Отверните два нижних винта.

#### Символы «Внимание» и «Примечание»

Этапы выполнения процедур представлены следующим образом:

 $\triangle$ 

#### внимание

Символ ВНИМАНИЕ указывает на особенности - Снимите крышку. управления, которые могут повлиять на точность резу- - … льтатов.



#### Примечание

**Примечания** содержат, например, ссылки на другие главы или специальные рекомендации по использованию определенной функции.

# Стандартная комплектация и принадлежности 2

# 2.1 Стандартная комплектация

| Код изделия | Описание                                                                       | Номер заказа |
|-------------|--------------------------------------------------------------------------------|--------------|
|             | Ультразвуковой дефектоскоп USM Go или USM Go+                                  |              |
| TC-096      | Транспортировочный контейнер                                                   |              |
| LI-138      | Заменяемая литий-ионная батарея, 7,4 В, 3,9 Ач                                 |              |
| LiBC-139    | Подключено зарядное устройство / адаптер питания пост.т., 100 В 260 В перем.т. |              |
|             | Карта памяти SD, 2 Гб                                                          |              |
|             | Пленки для защиты дисплея (10 шт.)                                             |              |
| WS-342      | Ремень на руку                                                                 |              |
|             | Краткое руководство по эксплуатации                                            |              |
|             | Руководство по эксплуатации на CD-диске                                        |              |
|             | Сертификат производителя                                                       |              |
# 2.2 Дополнительные функции

| Код изделия      | Описание                                                                                                                                                                              | Номер заказа |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| DAC/TCG          | Метод оценки эхо-сигнала ДАК, дистанционно-амплитудная характеристика по промышленному стандарту Японии JISDAC, дистанционно-амплитудная характеристика по стандарту Китая CNDAC. ВРУ |              |
| DGS              | Метод оценки эхо-сигнала АРД (DGS)                                                                                                                                                    |              |
| AWS              | Метод оценки эхо-сигнала AWS D1.1                                                                                                                                                     |              |
| SWP              | Генератор импульсов прямоугольного сигнала                                                                                                                                            |              |
| PPRF             | Детектор шумовых эхо-сигналов                                                                                                                                                         |              |
| 3Gate (3 строба) | Третий строб С                                                                                                                                                                        |              |
| DL               | Устройство регистрации данных толщины стенки                                                                                                                                          |              |

#### Питание

# 2.3 Предустановленные наборы функций

| Код изделия         | Описание                                      | Номер заказа |  |  |
|---------------------|-----------------------------------------------|--------------|--|--|
| Основной            | Ультразвуковой дефектоскоп USM Go или USM Go+ |              |  |  |
| DAC                 | Базовый с DAC/TCG, AWS, SWP                   |              |  |  |
| DGS                 | Базовый с DGS, AWS, SWP                       |              |  |  |
| Усовершенствованный | Базовый с DAC, DGS, AWS, SWP, PPRF            |              |  |  |

# 2.4 Рекомендуемые принадлежности

| Код изделия | Описание                                                                           | Номер заказа |
|-------------|------------------------------------------------------------------------------------|--------------|
| LI-138      | Заменяемая литий-ионная батарея, 7,4 В, 3,9 Ач                                     |              |
| LiBC-139    | Подключено зарядное устройство перем.т. / адаптер питания перем.т., 100 В<br>260 В |              |
| CA-040      | Адаптер для подключения внешнего источника заряда батареи                          |              |
| TC-096      | Транспортировочный контейнер                                                       |              |
| CH-097      | Плечевая лямка                                                                     |              |
| WH-098      | Сумка через плечо для прибора и контактной жидкости                                |              |
| WS-342      | Ремень на руку                                                                     |              |
| EK-492      | Эргономичный комплект (CH-097, WH-098, WS-342)                                     |              |
| CBL-604     | Кабель преобразователя: Lemo 00-90° - Microdot                                     |              |
| CBL-819     | Кабель преобразователя: Lemo 00-90° - Lemo 00                                      |              |

| Код изделия | Описание                                              | Номер заказа |
|-------------|-------------------------------------------------------|--------------|
| CBL-820     | Кабель преобразователя: Lemo 00-90° - Lemo 01         |              |
| CBL-821     | Кабель преобразователя: Lemo 00-90° - КВА 533         |              |
| CBL-822     | Кабель преобразователя: Lemo 00-90° - BNC-соединители |              |
| EN-499      | Сертификат EN 12668-1                                 |              |

Первый запуск 3

# 3.1 Установка прибора

# 3.2 Питание

Разложите опорную стойку на обратной стороне USM Go и установите USM Go может работать как от внешнего зарядного прибор на плоской поверхности, чтобы обеспечить легкое чтение с устройства/адаптера питания, так и от подходящей литий-ионной дисплея.

Если прибор был перенесен из холодного помещения в более теплое, USM Go также можно подключить к сети, если батарея перед включением подождите, пока он прогреется до комнатной темпе- установлена внутри прибора. В этом случае разряженная батарея ратуры, (чтобы избежать образования конденсата). будет заряжаться во время работы устройства.

Если (в редких случаях) образование конденсата произошло внутри **Работа от зарядного устройства/адаптера питания** прибора, крышка может запотеть изнутри. В этом случае крышка должна **Подключение к источнику питания** оставаться открытой, пока влага не испарится. До этого момента прибор включать не следует.

Для работы от зарядного устройства/адаптера питания следует использовать только зарядное устройство/адаптер питания, входящие в стандартный комплект принадлежностей.

Зарядное устройство/адаптер питания автоматически настраивается на любое напряжение переменного тока от 90 В до 240 В (номинальное напряжение).

#### Подключение прибора

Подключите USM Go к сетевой розетке при помощи подходящего зарядного устройства/адаптера питания. Разъем для подключения зарядного устройства/адаптера питания расположен на боковой части USM Go.

- Совместите штекер Lemo зарядного устройства/адаптера питания с отметкой красного цвета в разъеме (1).

- Вставьте штекер в гнездо, до хорошо слышного щелчка.

- Извлекая штекер Lemo, сначала потяните назад металлическую оплетку на разъеме, чтобы открыть защелку.

# ВНИМАНИЕ

Для того, чтобы правильно отключить питание прибора, нажмите клавишу включения/отключения питания (2) на боковой части прибора. Отключение выполняется неправильно, если цепь питания разомкнута (извлечена батарея, отсоединен штекер электропитания).



#### Работа с использованием батарей

Для работы от батареи необходимо использовать только соответствующую литий-ионную батарею.

#### Установка батареи

Батарейный отсек расположен на обратной стороне прибора. Крышка фиксируется при помощи двух крепежных винтов.

 Поверните два крепежных винта (1) батарейного отсека против часовой стрелки на четверть оборота каждый, чтобы ослабить их.
 Поднимите крышку вверх. В открытом батарейном отсеке с боковой стороны расположено несколько штыревых контактов (2).



- Поместите батарею в батарейный отсек таким образом, чтобы маркировка была направлена вверх, и контакты касались штыревых контактов (1).

- Сначала установите крышку батарейного отсека со стороны, противоположной винтам, и поместите выступы (3) в выемки корпуса.

- Плотно прижмите крышку со стороны винтов и поверните два винта (2) по часовой стрелке на четверть оборота каждый, чтобы запереть крышку.



# Проверка уровня заряда литий-ионной батареи

Литий-ионная батарея оснащена индикатором уровня заряда батареи. Пять светоизлучающих диодов (1) обозначают уровень заряда батареи. Проверьте уровень заряда батареи прежде перед установкой в прибор.

Количество горящих диодов обозначает следующее:

- 5 светодиодов: Уровень заряда батареи 100 ... 80 %
- 4 светодиода: Уровень заряда батареи 80 ... 60 %
- 3 светодиода: Уровень заряда батареи 60 ... 40 %
- 2 светодиода: Уровень заряда батареи 40 ... 20 %
- 1 светодиод: Уровень заряда батареи 20 ... 10 %
- 1 светодиод мигает: Уровень заряда батареи <10 %

- Нажмите на клавишу (2) рядом со светодиодами. Светодиодные индикаторы показывают уровень заряда батареи.



#### Индикатор уровня заряда батареи

USM Go снабжен индикатором уровня заряда батареи, который становятся доступны после этого незамедлительно. позволяет оценить оставшееся время работы прибора. Значок батареи с соответствующим уровнем заряда отображается в верхнем правом углу в верхней части А-развертки. Уровень заряда указывается в процентах под значком батареи.

#### Иконка Значение



Уровень заряда батареи, оставшееся время работы в часах (приблизительное значение)

питания

подсоединен,

# 58%

процент уровня заряда батареи (приблизительное значение)



Внимание: Низкий уровень заряда батареи, оставшееся время работы в минутах (приблизительное значение)

Зарядное устройство/адаптер

USM Go автоматически отключается, если работа больше не проводится. Все настройки сохраняются во время замены батареи и



#### Примечание

При низком уровне заряда батареи необходимо закончить испытание, отключить прибор и заменить батарею. Необходимо иметь вторую батарею на случай, если нет возможности подключить прибор к сети для работы прибора.

# Зарядка батарей

#### Состояние зарядки

зарядные устройства для зарядки литий-ионных батарей USM Go.

Можно зарядить литий-ионные батареи непосредственно в приборе Светодиод на зарядном устройстве/адаптере питания показывает или при помощи внешнего зарядного устройства. состояние зарядки.

| Зарядка батареи внутри прибора                                                                                                                                                                                                   | не горит:                                          | Зарядное устройство/адаптер питания не подсоединен к источнику питания                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Если литий-ионная батарея установлена, зарядка начина<br>автоматически, как только в разъем USM Go вставлен што<br>зарядного устройства/адаптера питания, подключенного<br>электросети. Можно одновременно выполнять ультразвуко | ется постоянный желтый свет:<br>екер<br>к<br>рвые  | Зарядное устройство/адаптер питания не подсоединен к прибору, либо батареи не установлены в прибор |
| испытания и заряжать батареи.                                                                                                                                                                                                    | мигающий зеленый свет:                             | Зарядка                                                                                            |
| Время зарядки с одновременными ультразвуковыми испытания примерно десять часов. Если прибор не используется для у                                                                                                                | <sub>МИ</sub> - Постоянный зеленый свет:<br>′льт-  | Зарядка завершена, батареи заряжены                                                                |
| развукового испытания, время зарядки примерно восемь ча<br>Время зарядки указано для температуры окружающей среды о<br>до 30°С.                                                                                                  | <sub>т 25</sub> Зарядка батареи вне н              | прибора                                                                                            |
|                                                                                                                                                                                                                                  | Можно заряжать литий-и<br>зарядного устройства USI | ионные батареи при помощи внешнего<br>И Go. Не используйте какие-либо другие                       |

# 3.3 Подключение преобразователя

При подключении двухэлементного (TR) преобразователя (имеющего один передатчик или генератор импульса и один приемник) или двух преобразователей (из которых один передает, а

Для подготовки USM Go к работе необходимо подключить к нему риемник) или двух преобразователей (из которых один передает, а преобразователь. Для USM Go может использоваться любой другой принимает) следует уделять внимание правильному преобразователь GEIT при условии наличия подходящего кабеля и расположению соединительных кабелей (см. символы на приборе): соответствия рабочей частоты требуемому диапазону.



#### ВНИМАНИЕ

Если преобразователь подключен неправильно, то последствием станет несовместимость, которая может привести к существенным потерям мощности или даже искажению формы волн эхо-сигналов.

Преобразователь подключается к разъемам на боковой части **–** корпуса прибора.

Оба контактных разъема одинаково подходят (соединены параллельно) для подключения преобразователей, снабженных одним ультразвуковым элементом (ультразвуковым датчиком), таким образом не имеет значения, который из двух разъемов используется.

| Иконка | Значение                      |
|--------|-------------------------------|
| 击      | Подключен генератор импульсов |
| ₫      | Подключен приемник            |

# 3.4 Установка карты памяти SD

Можно использовать любую карту памяти SD для USM Go. Для установки и извлечения карты памяти необходимо открыть водонепроницаемую крышку в верхней части прибора.

- Нажмите защелку откидной крышки (1) в направлении стрелки, чтобы открыть ее.

- Вставьте карту памяти SD в слот для карты таким образом, чтобы контакты (2) карты были обращены к передней стороне прибора.

- Вдавите карту в слот до щелчка.

- Закройте крышку и убедитесь, что она плотно зафиксирована. При необходимости надавите на защелку до упора в направлении, противоположном стрелке, чтобы герметично закрыть крышку.

- Чтобы извлечь карту SD откройте крышку и ненадолго надавите на карту, чтобы отсоединить ее.



# 3.5 Запуск USM Go

#### Включение питания

Чтобы включить USM Go нажмите на клавишу Power (Питание) (1) на боковой части корпуса прибора.

Программное обеспечение запущено. В это время дисплей будет оставаться пустым примерно в течение 3 секунд. Если лицензия DMS Go также установлена, то на дисплее появится страница выбора требуемого прибора. Выберите требуемый прибор при помощи джойстика (USM Go) или клавиш стрелок на клавишной панели (USM Go+).

После этого появится начальный экран, показывающий название прибора и информацию о программном обеспечении, серийный номер и установленные опции.

Прибор выполняет самодиагностику, а затем переключается в режим ожидания.

На момент включения прибора установки всех значений функций и установки по умолчанию (языки и единицы измерения) восстанавливаются по состоянию на момент выключения.



#### Выключение

Для выключения USM Go нажмите на клавишу Power (Питание) (1) на боковой части корпуса прибора.

Установки всех значений функций и установки по умолчанию (языки и единицы измерения) после выключения сохраняются

# Заводская установка по умолчанию (Сброс)

Если функции прибора стали недоступны или прибор неправильно реагирует на манипуляции, он может быть возвращен к заводским установкам по умолчанию. Все данные, на карте SD сохранятся, все остальные индивидуальные настройки, например, язык и единицы измерения, вернутся к заводским установкам по умолчанию.

- Отключите питание прибора.

- Одновременно нажмите на левый край клавиши усиления (1) прибора, левый край функциональной клавиши (2) и клавишу питания Power и удерживайте все три клавиши нажатыми, пока не появится начальный экран или страница выбора прибора.

Прибор запускается с заводскими настройками по умолчанию (выбор языка см. в Разделе **Языковые настройки**, страница 4-13).



Принципы управления 4



# 4.1 Общее описание средств управления оператора

- 1 Увеличение уровня усиления в соответствии с шагом
- 2 Уменьшение уровня усиления с шагом
- 3 Навигация по операционным уровням и группам функций
- 4 Функциональная клавиша 1, индивидуально настраиваемая



- 5 Функциональная клавиша 2, индивидуально настраиваемая
- 6 Экран для отображения А-развертки и функций
- 7 Клавиша питания для включения и выключения

# 4.2 Экран дисплея

#### Отображение А-развертки

USM Go имеет дисплей с экраном высокого разрешения для отображения А-развертки.

#### Экран А-развертки в нормальном режиме

| GAIN 1.0 R/B<br>24.4 dB % | 35 s   | 8/<br>M | 12. 2 | 6   | 0     |     | 0       |    |                       | 2ħ |
|---------------------------|--------|---------|-------|-----|-------|-----|---------|----|-----------------------|----|
| N B                       |        |         |       |     |       |     |         |    |                       | -  |
|                           | •      | +       |       | ٠   | -     | +   |         | +  | · :                   |    |
| gate b start              | h      |         |       |     | E     |     |         |    |                       |    |
| 10.23 mm                  | •      |         |       |     | - 8   |     |         | 1  | · :                   |    |
|                           | •      | +       |       | ٠   |       | +   |         | +  |                       |    |
| aate b width              |        |         |       |     |       |     |         |    |                       |    |
| 500 mm                    |        | *       | ,     | •   | E     | •   |         | *  |                       |    |
| 3.00 1111                 |        |         |       |     |       |     | • · · · |    | · · · · · ·           |    |
|                           | 1      |         |       |     | a     |     |         |    |                       |    |
|                           | 1      |         |       | ,   | - 8   | •   |         | •  |                       |    |
| 10%                       | 1.     |         | ,     | ,   | - 186 |     | ,       |    | <ul> <li>1</li> </ul> |    |
|                           | η. –   |         |       |     |       |     |         |    | . 1                   |    |
| TOF MODE                  |        | ÷       | -     |     | E     |     | -       | -  |                       |    |
| J-FLANK                   | IV A   | +       | ,     | •   | -     | •   | ,       | *  | · 1                   |    |
| 23                        | 1 May  | ha -    |       | 10, | 1.1   |     | a2      |    | 1227                  |    |
| RANGE PULSER              | RECEIV | /ER     | dB RE | F   | AUTO  | CAL | GAT     | ΈA | GATE B                |    |

#### Экран А-развертки в режиме масштабирования



Усиление и настроенное значение шага в дБ отображаются в верхнем левом углу экрана дисплея. Доступ ко всем функциям прибора в режиме масштабирования экрана А-развертки отключен.

#### Переключение режима экрана А-развертки

Для переключения нормального режима и режима масштабирования экрана А-развертки один раз нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

#### Функции экрана дисплея

#### Функциональные группы

Названия семи функциональных групп отображаются в нижней части лея, рядом с А-разверткой. экрана дисплея. Выбранная функциональная группа подсвечивается.

Первый операционный уровень (А-развертка):

|       | -2     | 2 PV 19 10 11 |        | 1 Mary  | Mr. 120 | 227    |
|-------|--------|---------------|--------|---------|---------|--------|
| RANGE | PULSER | RECEIVER      | dB REF | AUTOCAL | GATE A  | GATE B |

Второй операционный уровень (настройки):

| FILES | EVAL | dB REF | CONFIG1 | CONFIG2 | CONFIG3 | 40 |
|-------|------|--------|---------|---------|---------|----|

| Функции |
|---------|
|---------|

На первом операционном уровне функции выбранной функциональной группы отображаются в левой части экрана дисплея, рядом с А-разверткой.

| GAIN 1.0 B/B<br>24.4 dB K |  |
|---------------------------|--|
| N 8                       |  |
| gate b start              |  |
| 10.23 mm                  |  |
| aate b width              |  |
| 5.00 mm                   |  |
|                           |  |
| B THRESHULD               |  |
|                           |  |
| TOF MODE                  |  |
| J-FLANK                   |  |
| RANGE PULSER              |  |

В режиме масштабирования дисплея А-развертки функции скрыты; в этом случае работа невозможна.

#### Усиление

Полоса измерений

Текущее значение усиления и настроенное значение шага в дБ всегда ^ = точка измерения Пик

| GAIN 0.2 | RAR <b>-</b> | 86 %     | DA/= | <br>nn. | AKA= | 86  | ×. | ANA | 00 |    |
|----------|--------------|----------|------|---------|------|-----|----|-----|----|----|
| 29.4 dB  | sa/=         | 26.58 mm | RA/= | <br>nn. | ANB= | -11 | X  | X   | 00 | 5h |

В дополнение к значению измерения отображается точка измерения (пиковая или по фронту) в виде символа в измерениях пути звука:

/ = точка измерения По фронту

Примеры:

SA<sup>^</sup> = путь звука в пределах строба А, в Пиковой точке измерения

Полоса измерений в верхней части А-развертки показывает семь SA/ = путь звука в пределах строба А, в точке измерения различных значений измерения. Одно значение может быть показано По фронту

в увеличенном режиме в крайнем квадрате справа. Значения в отдельных квадратах могут выбираться пользователем (см. раздел Конфигурирование полосы измерений, страница 5-59).

| GAIN | 0.2 | eran | 86 %     | DA/= | NR | AKA= | 86 % | A%A | 00 |    |
|------|-----|------|----------|------|----|------|------|-----|----|----|
| 29.4 | dB  | SA/= | 26.58 mm | RA/= | NA | AKB= | 11 % | X   | 00 | 5h |

В расширенном режиме могут быть представлены одно или четыре значения измерений. Количество других квадратов полосы измерений в таком случае уменьшается (см. Раздел Расширенное отображение измерений, страница 5-62).

| GAIN 0.2<br>29.4 dB | <sup>AXA</sup> 81 | <sup>sa/</sup> 2 | 6. 30 | <sup>dBrA</sup> O. | 1 | Sba | 24. 58  |    |
|---------------------|-------------------|------------------|-------|--------------------|---|-----|---------|----|
| 29.4 OB             | 5 UI              | 10 L             | 0.00  | db 😶               | • | 10  | L-1. 00 | 2h |

#### Примечание

Точка измерения для амплитуды отмечена для соответствующего строба на верхнем крае экрана треугольником, указывающим вверх, цвета строба, измерения точка для расстояния отмечена треугольником, указывающим вниз.

#### Иконки индикатора состояния

С левой стороны от А-развертки, ниже полосы измерений находится зона различных индикаторов состояния. Иконки индикатора состояния информируют об активных функциях и некоторых настройках (см. Раздел **Иконки индикатора состояния,** страница 0-7 в начале настоящего руководства по эксплуатации).

| GAIN 0.6   | NA= 71 %     | R%8=        | 0 X AKA=    | 71 % SA/ | 2 24     |
|------------|--------------|-------------|-------------|----------|----------|
| 24.6 dB    | %A/= 2.24 mm | i SB^= 🛛 0. | .00 nn AKB= | 0 % բաղ  | Z. Z4 41 |
| <u>ル</u> * | 9            |             |             |          |          |

#### Сигналы

Можно настроить отображение предупредительного сигнала в виде виртуального светодиода в дальнем правом поле в верхней части А-развертки (см. Раздел LARGE (сигнал светодиода), страница 5-64).

В случае срабатывания, сигнал предупреждения меняет цвет с зеленого на красный.

| GAIN 0.2 | RAR= | 83 %     | DA/= | <br>88  | AKA= | 63 % |     |  |
|----------|------|----------|------|---------|------|------|-----|--|
| 47.4 dB  | SA/= | 42.83 mm | RA/= | <br>nn. | ANB= | 54 % | A 🚮 |  |

# 4.3 Навигация и функциональный клавиши

#### Навигация

В **USM Go** для навигации, изменения настроек и выбора значений настроек используется джойстик.

В дефектоскопе **USM Go+** эти функции выполняются при помощи пяти клавиш на клавишной панели Клавиши со стрелками на клавишной панели соответствуют движению джойстика в соответствующем направлении, а нажатие центральной клавиши соответствует нажатию на джойстик.

Навигация используется:

- для переключения между операционными уровнями,
- для выбора функциональных групп,
- для выбора и установки функций,
- для выбора режима масштабирования дисплея А-развертки

#### Функциональные клавиши

Две группы клавиш, состоящие из двух функциональных клавиш каждая, находятся рядом с экраном дисплея.

Две верхние функциональные клавиши используются для изменения усиления и включения функции **АUTO 80** (см. Раздел **Комбинации клавиш,** страница 4-8).

В Две нижние функциональные клавиши используются

• для изменения значений или настроек,

• для выбора опций,

• для запуска заданных пользователем функций (см. Главу 5.3 Назначение функциональных клавиш, страница 5-8).



#### Примечание

Изменить многие значения можно либо при помощи навигации (малый шаг), либо при помощи нижних функциональных клавиш (большой шаг).

# Комбинации клавиш

Некоторые функции можно выполнять при помощи комбинаций клавиш. Для этого необходимо нажать несколько клавиш одновременно (см. Раздел **Общее описание средств управления оператора**, страница 4-2).

| Функция | Клавиши                                                             |  |  |  |  |  |
|---------|---------------------------------------------------------------------|--|--|--|--|--|
| HOME    | Функциональная клавиша 1 + функциональная<br>клавиша 2              |  |  |  |  |  |
| AUTO 80 | Увеличение усиления + уменьшение усиления                           |  |  |  |  |  |
| UPDATE  | Уменьшение усиления + функциональная клавиша 2<br>+ Клавиша питания |  |  |  |  |  |
| RESET   | Увеличение усиления + функциональная клавиша 2 +<br>Клавиша Power   |  |  |  |  |  |

#### Клавиша питания

Клавиша для включения и выключения прибора расположена на боковой части прибора, рядом с соединителем преобразователя

(USM Go+).

# 4.4 Принципы работы

#### Операционные уровни

### Выбор и установка функций

Ниже А-развертки показаны семь функциональных групп, которые могут быть выбраны напрямую, используя навигацию. Название функциональной выбранной группы подсвечивается, И USM Go является простым в использовании прибором. У него соответствующие четыре функции отображаются с левой стороны, имеются два операционных уровня, которые можно переключать рядом с А-разверткой. путем нажатия джойстика (USM Go) или центральной клавиши

Первый операционный уровень показывает А-развертку и используется во время работы в стандартном режиме.

Он содержит семь групп функций для настроек во время работы в стандартном режиме.

Второй операционный уровень содержит все функции для конфигурации прибора. Здесь также находятся функции сохранения, печати, обработки данных при помощи регистратора данных, а также функции, например обновление программного специальные обеспечения.

| GAIN 1<br>24.4 ( | LOR%B<br>dBK |      | 35   | SB/   | 12.  | 26            | 0    |       | 0   | )    |      | 21  |
|------------------|--------------|------|------|-------|------|---------------|------|-------|-----|------|------|-----|
| N                | 5            | 1    |      |       |      |               | ٠    |       |     |      | :    |     |
| gate b st        | tart         |      |      | +     | ,    | •             | Ē    | +     | ,   | +    |      |     |
|                  | 10.23 m      | n    | •    |       |      |               |      | *     |     | *    |      |     |
|                  |              | 4    | •    | +     | ·    | ٠             | H    | +     |     | +    |      |     |
| gate b w         | /idth        |      |      | +     |      | ٠             |      | +     | ,   | +    |      |     |
|                  | 5.00 mi      | n    |      |       |      |               |      |       |     |      |      |     |
| B THRES          | HOLD         | -    | I.   |       |      |               | Ā    |       |     |      | ,    |     |
| e mateo          | 109          | 6    |      |       |      |               |      |       |     |      | . 1  |     |
|                  |              |      | 1    |       |      |               |      |       |     |      |      |     |
| TOF MOD          | DE           |      |      | +     | •    | ٠             | - E  | +     | •   | +    |      |     |
|                  | J-FLAN       | К    | M    | •     | ,    | *             | 1    |       | ,   | +    |      |     |
|                  |              | -2.2 | ιþγ  | min   | بيسا | _ <b>[1</b> 0 | 1.   | H-    | -M- | 20   | 217  | han |
| RANGE            | PULSE        | R    | RECI | eiver | dB   | REF           | - AU | TOCAL | GA  | A JT | GATE | в   |

Таким же образом можно напрямую выбрать отдельные функции, используя навигацию.

Если функция выбрана, название функциональной группы выделяется красным. После этого можно изменить значение, используя навигацию или функциональные клавиши.

Можно выбрать между предварительной и точной настройкой некоторых функций.

Предварительная и точная настройка функций

Точная настройка производится при помощи навигации. На быстроту изменения влияет движение джойстика (например, для функции VELOCITY (СКОРОСТЬ)).

Используйте нижние функциональные клавиши ДЛЯ предварительной настройки. После этого значение изменится с большим шагом (например, для функции RANGE (ДИАПАЗОН)), либо значение может быть выбрано из группы заводских значений (например, для функции VELOCITY)

Во время точной настройки название функции отображается буквами в нижнем регистре (range), тогда как во время предварительной настройки оно отображается буквами в верхнем регистре (RANGE).

Пока функция выбрана, можно изменить только соответствующее значение, но переключиться между функциональными группами нельзя. Для переключения между функциональными группами, сначала необходимо выбрать функциональную группу, используя навигацию повторно (название подсвечивается).

#### Примечание

Джойстик в USM Go можно заблокировать. Любые изменения регулировки при помощи джойстика станут после этого невозможны (см. Раздел Блокировка джойстика, страница 5-76).

USM Go



#### Функция НОМЕ

Функцию **НОМЕ** можно или необходимо выбрать в различных случаях (например, для подтверждения определенных настроек). Для этого нажмите функциональные клавиши одновременно (см. Раздел **Общее описание средств управления оператора,** страница 4-2).



Примечание

Можно присвоить функцию **HOME** одной из функциональных клавиш (см. Раздел **Назначение** функциональных клавиш, страница 5-8).

#### Выбор начального значения

Функцию **НОМЕ** можно использовать для некоторых функций, чтобы быстро выбрать начальное значение диапазона регулирования. Для этого нажмите две нижние функциональные клавиши одновременно после выбора функции. Таким образом можно, например, установить значение функции **DISPLAY DELAY (ЗАДЕРЖКА ОТОБРАЖЕНИЯ)**на **0.000** мкс.

Такой вариант быстрой регулировки доступен для следующих функций:

| Функция                   | Функциональная группа |
|---------------------------|-----------------------|
| PROBE DELAY               | RANGE (ДИАПАЗОН)      |
| (ЗАДЕРЖКА                 |                       |
| ПРЕОБРАЗОВАТЕЛЯ)          |                       |
| DISPLAY DELAY             | RANGE (ДИАПАЗОН)      |
| (ЗАДЕРЖКА                 |                       |
| ОТОБРАЖЕНИЯ)              |                       |
| <b>REJECT (ОТКЛОНИТЬ)</b> | RECEIVER (ПРИЕМНИК)   |

| Активация функции                                                                                                                                                                                                                                                              | пример                                                                                                                                                                                                                                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Обычно есть два варианта выбора функций, запуска действий или изменения настроек на втором операционном уровне:                                                                                                                                                                | или - Переключитесь на второй операционный уровень.<br>- В функциональной группе EVAL выберите функцию MAGNIFY GATE<br>(УВЕЛИЧЕНИЕ СТРОБА).                                                                                                           |  |  |  |  |
| <ul> <li>используя функциональные клавиши непосредственно после<br/>выбора функции,</li> <li>используя функциональные клавиши или навигацию после акт-<br/>ивации функции.</li> </ul>                                                                                          | Вариант 1:<br>- Нажмите функциональные клавиши, чтобы напрямую выбрать строб<br>для функции усиления строба.                                                                                                                                          |  |  |  |  |
| Гримечание<br>Прямое изменение настроек или функций невозможно<br>для некоторых операций и, в любом случае, необходимо<br>активировать функцию перед тем, как вносить<br>изменения в какие-либо настройки. Например,<br>необходимо выбрать функцию <b>DIRECTORY</b> для выбора | Вариант 2:<br>- Нажмите джойстик (USM Go) или центральную клавишу клавишной<br>панели (USM Go+) для активации функции <b>MAGNIFY GATE.</b><br>Выбранная настройка подсвечивается.<br>- После этого измените настройку, используя либо навигацию, либо |  |  |  |  |

директории на карте памяти SD.

# 

- После изменения настройки опять нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+) для отключения функции. После этого можно снова использовать навигацию для перехода к другой функции.

функциональные клавиши.

# 4.5 Важные настройки по умолчанию

#### Языковые настройки



#### Доступны следующие языки:

- Болгарский Китайский
- Английский Финский
- Итальянский
- Норвежский
- Румынский
- Испанский

- Немецкий
- Французский
- Голландский
- Португальский
- Шведский
- Венгерский
- Переключитесь на второй операционный уровень.

• Японский

• Польский

• Русский

• Чешский

- В функциональной группе **CONFIG1** выберите функцию **LANGUAGE.** 

- Используйте функциональные клавиши для выбора необходимого языка. Язык незамедлительно изменится.

Используйте функцию LANGUAGE (ЯЗЫК) (функциональная группа CONFIG1 на втором операционном уровне) для выбора языка отображения.

#### Установка единиц измерения



# Можно использовать функцию **UNITS (ЕДИНИЦЫ** Можно выбрать знак десятичного разделителя. Все данные **ИЗМЕРЕНИЯ)**(функциональная группа **CONFIG1** на втором отображаются и сохраняются с использованием выбранного операционном уровне) для выбора требуемых единиц измерения десятичного разделителя.

(мм, дюймы или мкс). Изменить единицы измерения можно в любое

время. Все значения изменяются соответственно.

- Переключитесь на второй операционный уровень.

Десятичный разделитель

- В функциональной группе **CONFIG1** выберите функцию **DECIMAL**.

Переключитесь на второй операционный уровень.
 В функциональной группе CONFIG1 выберите функцию

UNITS. Используйте функциональные клавиши для выбора необходимой - Используйте функциональные клавиши для выбора необходимых настройки. единиц измерения.

#### Формат даты, дата и время

| REGIONAL    | STARTUP      |
|-------------|--------------|
| LANGUAGE    | DATE         |
| ENGLISH     | 09.01.2013   |
| UNITS       | TIME         |
| mm          | 11:34        |
| DECIMAL     | ORIENTATION  |
| PERIOD      | RIGHT HANDED |
| DATE FORMAT | JOY CONTROL  |
| D.M.Y 24H   | ON           |

- Переключитесь на второй операционный уровень.

- В функциональной группе CONFIG1 выберите функцию **DATE FORMAT (ФОРМАТ ДАТЫ).** 

- Используйте функциональные клавиши для изменения формата даты. Формат времени изменяется вместе с изменением формата даты.

- Выберите функцию DATE (ДАТА).

- Нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+) для изменения настройки. Первое значение (день, месяц или год) подсвечивается.

- Используйте навигацию для изменения подсвеченного значения и Дата сохраняется вместе с результатами проверки. Задать формат даты, дату и время можно, используя соответствующие функции перехода к следующему значению.

функциональной группы CONFIG1 на втором операционном уровне.

#### внимание

- В заключение нажмите джойстик (USM Go) или центральную Для того, чтобы документация была корректной клавишу клавишной панели (USM Go+), чтобы закрыть настройку. обязательно убедитесь, что используются правильные Новые значения будут заданы незамедлительно. дату и время. Необходимо помнить о переводе часов при переходе с зимнего на летнее время.

Выберите функцию ТІМЕ (ВРЕМЯ).

- Измените время таким же образом, как и дату.

- Измените другие значения таким же образом.

- В заключение нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+), чтобы закрыть настройку. Новые значения будут заданы незамедлительно.

#### Выбор ориентации прибора



Можно настроить прибор для левосторонней и правосторонней работы (относительно преобразователя). Экран дисплея в таком случае поворачивается на 180°, функции навигации и функциональные клавиши перенастраиваются соответствующим образом.

- Переключитесь на второй операционный уровень.

- В функциональной группе **CONFIG1** выберите функцию

#### ORIENTATION (ОРИЕНТАЦИЯ).

- Используйте функциональные клавиши для выбора необходимой ориентации.

# 4.6 Настройки дисплея по умолчанию

USM Go оборудован цветным дисплеем высокого разрешения. Дисплей может быть оптимизирован в соответствии со зрительными возможностями и рабочей средой.

#### Выбор цветовой схемы



Можно выбрать одну из четырех цветовых схем, используя функцию Выбор цвета А-развертки COLOR (ЦВЕТ) (функциональная группа CONFIG1 на втором операционном уровне). Цветовая схема определяет цвет всех экранов и фона. Цвет оформления А-развертки отдельно может бы установлен (см. раздел ниже). 4E 3

#### Примечание

Все цветовые схемы подходят для использования Для использования помещении. вне помеще рекомендуются Схема 3 и Схема 4.

- Переключитесь на второй операционный уровень.

- В функциональной группе CONFIG1 выберите функцию COLOR.

- Используйте функциональные клавиши для выбора необходимой цветовой схемы.

Цвет А-развертки может быть выбран блатодаря использованию функции A-SCAN COLOR (ЦВЕТ А-РАЗВЕРТКИ) (функциональная группа CONFIG1 на втором операционном уровне). Варианты цвета зависят от выбранной цветовой схемы (см. Раздел Выбор цветовой схемы, страница 4-16).

- Переключитесь на второй операционный уровень.

- В функциональной группе CONFIG1 выберите функцию

#### A-SCAN COLOR.

10

- Используйте функциональные клавиши для выбора требуемого цвета для А-развертки.

|     | DISPLAY        |
|-----|----------------|
| ыь  | COLOR          |
|     | SCHEME 3       |
|     | GRID           |
| łВ  | GRID1 WO RULER |
| ния |                |
|     | ASCAN COLOR    |
|     | BLUE           |
|     |                |
|     | BRIGHTNESS     |
|     | 10             |

#### Выбор сетки



# DISPLAY COLOR SCHEME 3 GRID GRID1 WO RULER ASCAN COLOR BLUE BRIGHTNESS 10

Настройка яркости

Используя функцию **GRID (CETKA)** (функциональная группа Для установки яркости дисплея, используется функция **BRIGHTNESS CONFIG1** на втором операционном уровне) можно выбрать сетку для (**ЯРКОСТЬ**) (функциональная группа **CONFIG1** на втором А-развертки. В качестве вариантов доступны две сетки, каждая с операционном уровне). Значение может быть установлено от 1 до 10. линейкой и без нее на нижнем крае экрана.

- Переключитесь на второй операционный уровень.

- В функциональной группе **CONFIG1** выберите функцию **GRID.** 

- Используйте функциональные клавиши для выбора требуемой сетки для А-развертки.

# 12

#### Примечание

При увеличении яркости возрастает потребление мощности, в связи с чем время работы сокращается при работе от батареи.

- Переключитесь на второй операционный уровень.

- В функциональной группе **CONFIG1**выберите функцию **BRIGHTNESS**.

- Используйте функциональные клавиши для выбора необходимого значения.

# R

#### Примечание

Увеличить время работы можно при помощи функции энергосбережения (см. Раздел Энергосберегающий режим, страница 5-79).

# 4.7 Сохранение настроек



Можно сохранить текущие настройки прибора в файл на карте памяти SD. Файлы для USM Go имеют расширение имени файла UGO.

5 Эксплуатация

| •           | ВНИМАНИЕ                                             | - Перейдите к функции АСТІОΝ (ДЕЙСТВИЕ) и используйте                    |
|-------------|------------------------------------------------------|--------------------------------------------------------------------------|
| <b>A</b>    |                                                      | функциональные клавиши для выбора функции STORE DATA-                    |
|             | Имя файла для сохранения серии данных не должно      | SET (ХРАНЕНИЕ СЕРИИ ДАННЫХ).                                             |
|             | превышать 14 знаков. Однако только первые 7 знаков   | - Перейдите к функции FILENAME (ИМЯ ФАЙЛА) и нажмите                     |
|             | отображаются на экране над А-разверткой (см. Раздел  | джойстик (USM Go) или центральную клавишу клавишной панели               |
|             | Отображение названия серии данных, страница 4-22).   | (USM Go+).                                                               |
|             |                                                      | - Используйте навигацию для выбора варианта                              |
|             | Необходимо помнить об этом ограничении при           | <new file=""> (&lt;НОВЫЙ ФАЙЛ&gt;) и нажмите джойстик (USM Go) или</new> |
|             | сохранении серий данных, чтобы избежать путаницы ме- | центральную клавишу клавишной панели (USM Go+).                          |
|             | жду именами файлов, начинающихся с одного знака.     | - Используйте навигацию для выбора первого знака названия файла.         |
|             |                                                      | - Используйте навигацию для перехода к следующему пункту и               |
|             |                                                      | выберите следующий знак.                                                 |
|             |                                                      | - Нажмите джойстик (USM Go) или центральную клавишу клавишной            |
| - Переключ  | итесь на второи операционный уровень.                | панели (USM Go+) для завершения ввода имени файла.                       |
| - в функц   | иональной группе FILES (ФАИЛЫ) выоерите функцию      |                                                                          |
| DIRECTOR    | и нажмите джоистик (USM Go) или центральную          |                                                                          |
| клавишу кл  | авишнои панели (USM Go+). Отооражается директория    |                                                                          |
| карты памя  |                                                      |                                                                          |
| - используи | ите функциональные клавиши для выбора директории на  |                                                                          |
| карте SD.   |                                                      |                                                                          |

- Нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+) для выбора директории.
- Перейдите к функции ENTER (ВВОД) и нажмите джойстик (USM Go) Возврат к настройкам

или центральную клавишу клавишной панели (USM Go+).

Настройки прибора, сохраненные на карте памяти SD, можно вызвать и использовать.

Текущие настройки прибора сохраняются в выбранную директорию на карте памяти SD под введенным именем.



#### Примечание

Можно создавать и удалять директории, вставляя карту памяти SD в картридер SD для ПК или подключая USM Go к ПК через USB кабель (см. Раздел **USB-интерфейс,** страница 8-3).



#### Примечание

Можно вызвать только серии данных, имеющие расширение имени файла UGO. Другие файлы на карте памяти SD не отображаются в качестве возможных вариантов.

- Переключитесь на второй операционный уровень.

- В функциональной группе **FILES (ФАЙЛЫ)** выберите функцию **DIRECTORY** и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+). Отображается директория карты памяти SD.

- Используйте функциональные клавиши для выбора директории на карте SD.

- Нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+) для выбора директории.

- Перейдите к функции **ACTION (ДЕЙСТВИЕ)** и используйте **Отображение названия серии данных** функциональные клавиши для выбора функции **RECALL DATA-**

#### SET (ХРАНЕНИЕ СЕРИИ ДАННЫХ).

- Перейдите к функции **FILENAME (ИМЯ ФАЙЛА)** и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+).

- Используйте навигацию для выбора названия требуемой серии данных.

- Нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+). Выбор автоматически изменяется на функцию **ENTER.** 

- Нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+).

Вызванные настройки прибора из выбранной серии данных, автоматически активизируются после завершения процесса вызова.

|           |     | 1 |
|-----------|-----|---|
| RESULIS   |     |   |
| READING 1 |     |   |
|           | A%A |   |
|           |     |   |
| DEADING 2 |     |   |
| KEADING Z |     |   |
|           | SA  |   |
|           |     |   |
| READING 3 |     |   |
| NEADING 5 |     |   |
|           | А%В |   |
|           |     |   |
| READING 4 |     |   |
|           | CD  |   |
|           | 28  |   |
|           |     |   |

Можно отобразить имя файла вызванных настроек прибора (название серии данных) в измерительном контуре над А-разверткой.



#### Примечание

Название серии данных может быть отображено только в крайнем справа поле.

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу EVAL.
- Выберите функцию LARGE.

- Используйте функциональные клавиши для выбора параметра **DSET** в качестве значения.

- Переключитесь на первый операционный уровень.

После вызова настроек прибора соответствующее имя файла (название серии данных) отображается красными буквами в полосе измерения в крайнем справа поле над А-разверткой.

| GAIN 0.2<br>29.4 dB | 2 RMA 81 | <sup>sa/</sup> 26 | i. 30 d <sup>ara</sup> | 0.1 | date <b>ge</b> | 2013 | 4 |
|---------------------|----------|-------------------|------------------------|-----|----------------|------|---|
| 231100              |          |                   | uur.                   |     |                |      | _ |



#### ВНИМАНИЕ

Имя файла для сохранения серии данных не должно превышать 14 знаков (на втором операционном уровне). Однако только первые 7 знаков отображаются на экране над А-разверткой (на первом операционном уровне).

Необходимо помнить об этом ограничении при сохранении серий данных, чтобы избежать путаницы между именами файлов, начинающихся с одного знака.

# Эксплуатация 5

#### 5.1 Обзор функций

Функции USM Go подразделяются на функциональные группы двух операционных уровней.

- Нажмите и удерживайте клавишу джойстика (USM Go) или центральную клавишу клавишной панели (USM Go+) в течение примерно 2 секунд для переключения между двумя операционными уровнями.

- Используйте навигацию для выбора функции или настройки.
- Используйте функциональные клавиши для выбора настройки.



#### Примечание

Подробное описание использования клавиш управления Второй операционный уровень в Главе 4 Правила эксплуатации.

Усиление всегда непосредственно доступно благодаря двум клавишам, расположенным сверху от экрана. Обзор функциональных групп и соответствующих им функций

приведен на первых страницах данного руководства по эксплуатации.

Первый операционный уровень состоит из семи функциональных групп на экране по умолчанию.



#### Примечание

Когда активированы определенные функции, другие группы выводятся на экран при пролистывании вверх. Можно вернуться к прежнему экрану нажатием центральной клавиши.

Второй операционный уровень содержит восемь функциональных групп.

Первый операционный уровень

#### Функциональные группы первого операционного уровня

| RANGE (Диапазон)                           | Здесь находятся функции, необходимые для базовых настроек отображения сигнала на                                                                                  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | экране.                                                                                                                                                           |
| PULSER (Генератор импульсов)               | Комбинация функций для настройки генератора импульсов.                                                                                                            |
| PULSER (Приемник)                          | Комбинация функций для настройки приемника.                                                                                                                       |
| <b>dB REF</b> (дБ ОПОРН.)                  | Группа, содержащая функции оценки уровня опорного сигнала в дБ. Названия функций этой                                                                             |
|                                            | группы могут отличаться, в зависимости от выбранного метода оценки.                                                                                               |
| <b>AUTOCAL</b> (Автоматическая калибровка) | Здесь находятся функции полу-автоматической настройки прибора.                                                                                                    |
| GATE A (Строб A)                           | К данной группе отнесены функции, необходимые для настройки Строба А.                                                                                             |
| GATE В (Строб В)                           | К данной группе отнесены функции, необхдимые для настройки Строба В.                                                                                              |
| GATES (Стробы)                             | Только при активной настройке 3В: Все функции для настройки стробов А, В и С.<br>Функциональные группы <b>GATE А</b> и <b>GATE В</b> в это время не отображаются. |

#### Функциональные группы второго операционного уровня

| FILES (Файлы)                        | Здесь находятся функции управления файлами, отчетами об испытаниях и видео.                                                                                         |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVAL (Оценка)                        | Данная группа представляет набор функций для методов оценки. Кроме того, здесь можно настроить полосу измерений (См. Раздел <b>Полоса измерений</b> , страница 4-5. |
| <b>dB REF</b> (дБ ОПОРН.)            | В данной группе содержатся функции для методов оценки уровня опорного сигнала в дБ. Название и                                                                      |
|                                      | функции этой группы могут отличаться в зависимости от выбранного метода оценки.                                                                                     |
| <b>DAC/TCG</b> (Дистанционно-амплит  | удная коррекция/Временная регулировка усиления)                                                                                                                     |
|                                      | В данной группе содержатся функции методов оценки ДАК/ВРУ (опция).                                                                                                  |
| DGS (амплитуда - расстояние - ди     | ламетр)                                                                                                                                                             |
|                                      | В данной группе содержатся функции методов оценки АРД (опция).                                                                                                      |
| AWS D1.1                             | В данной группе содержатся функции методов оценки AWS D1.1 (опция).                                                                                                 |
| JISDAC(Дистанционно-амплитуди        | ная характеристика по промышленному стандарту Японии)                                                                                                               |
|                                      | В данной группе содержатся функции методов оценки Дистанционно-амплитудной характеристики по промышленному стандарту Японии (опция).                                |
| <b>CNDAC</b> (Дистанционно-амплитудн | ная характеристика по стандарту Китая)                                                                                                                              |
|                                      | В данной группе содержатся функции методов оценки Дистанционно-амплитудной характеристики по стандарту Китая (опция).                                               |

| CONFIG1 (Настройка1)                                          | Здесь находятся настройки по умолчанию, .например, язык, цвет, опции А-развертки экрана.                                                               |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CONFIG2</b> (Настройка2)                                   | Здесь находятся специальные функции настроек прибора для приложений испытаний и измерений.                                                             |
| <b>CONFIG3</b> (Настройка3)                                   | Здесь находятся дополнительные функции настроек прибора для приложений испытаний и измерений.                                                          |
| <b>CONFIG4</b> (Настройка4)<br><b>DR</b> (Регистрация данных) | В данной группе находятся функции для автоматического управления усилением.<br>В данной группе содержатся все функции для регистратора данных (опция). |

#### 5.2 Настройка усиления

## Для удобной и быстрой настройки усиления данная функция всегда доступна для вызова нажатием двух клавиш сверху от экрана.

Усиление может быть использовано для корректировки чувствительности, необходимой для отображения на экране эхо требуемой высоты от отражателей, которые должны быть обнаружены

- Нажмите верхнюю клавишу для увеличения коэффициента усиления. Текущий коэффициент усиления отображается в верхнем левом углу экрана.

- Нажмите нижнюю клавишу для уменьшения коэффициента усиления.

| SETUP 2        |  |
|----------------|--|
| CAL REMINDER   |  |
| OFF            |  |
|                |  |
| CALINESET      |  |
|                |  |
| USER GAIN STEP |  |
| 10.0dB         |  |
|                |  |
| dB STEP        |  |
| 0.6            |  |
|                |  |

# Настройка шага приращения усиления в дБ

Нажатие указанных клавиш всегда устанавливает коэффициент усиления на заданное значение приращения в дБ. Можно указать данное приращение в дБ.

| Доступны сл    | ледующие настройки:                                                                                 | - Переключитесь на второй операционный уровень                                                                                                                                              |
|----------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • LOCK (заб.   | локирован)                                                                                          | - В функциональной группе <b>CONFIG2</b> выберите функцию установки шага дБ <b>dB STEP.</b>                                                                                                 |
| • 0,2 дБ       |                                                                                                     |                                                                                                                                                                                             |
| • 0,6 дБ       |                                                                                                     | - нажмите функциональные клавиши для выбора необходимого приращения в дБ.                                                                                                                   |
| • 1,0 дБ       |                                                                                                     | Можно установить приращение в дБ седьмого уровня, используя<br>функцию установки шага усиления пользователем USER GAIN STEP.                                                                |
| • 2,0 дБ       |                                                                                                     |                                                                                                                                                                                             |
| • 6,0 дБ       |                                                                                                     | Диапазон отображения может быть установлен в соответствии с<br>шагом предварительной или точной настройки (см. <b>Раздел</b><br>Предварительная и точная настройка функций, страница 4-10). |
| • 0,2 60,0 #   | дБ                                                                                                  |                                                                                                                                                                                             |
|                |                                                                                                     | - Выберите функцию USER GAIN STEP.                                                                                                                                                          |
| R <sup>a</sup> | Настройка <b>LOCK</b> блокирует усиление, предотвращая непреднамеренное изменение его коэффициента. | - При помощи функциональных клавиш или навигации установите шаг<br>усиления.                                                                                                                |

| 5.3 Назначе                                                                                                                                                                                           | ение функциональных клавиш                                                                            | Доступны следующие настройки:         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                       |                                                                                                       | • NONE (функция не выбрана)           |
| SETUP<br>FUNCTION 1                                                                                                                                                                                   |                                                                                                       | • FREEZE (см. страницу 5-68)          |
| MAGNIFY GATE<br>NONE                                                                                                                                                                                  |                                                                                                       | • JOYSTICK LOCK (см. страницу 5-76)   |
| FUNCTION 2<br>FREEZE<br>COPY                                                                                                                                                                          |                                                                                                       | • <b>СОРҮ</b> (см. страницу 6-2)      |
| ABOUT                                                                                                                                                                                                 |                                                                                                       | • AUTO80 (см. страницу 5-92)          |
| ASCAN FILL                                                                                                                                                                                            |                                                                                                       | • MAGNIFY GATE (см. страницу 5-65)    |
| OFF                                                                                                                                                                                                   |                                                                                                       | • <b>dB STEP</b> (см. страницу 5-6)   |
| <br>Двум функциональным клавишам в нижней части рядом с экраном<br>могут быть назначены различные функции, которые могут быть<br>активированы в любое время без переключения операционного<br>уровня. |                                                                                                       | • RECALL DATASET (см. страницу 4-21)  |
|                                                                                                                                                                                                       |                                                                                                       | • ORIENTATION (см. страницу 4-16)     |
|                                                                                                                                                                                                       |                                                                                                       | • ENVELOPE (см. страницу 5-83)        |
| Каждой из двух<br>функции, одна                                                                                                                                                                       | функциональных клавиш может быть назначено по две из которых вызывается коротким нажатием, а другая - | • НОМЕ (см. страницу 4-8)             |
| долгим (примерно 2 секунды). В целом, это означает, что двум клавишам могут быть назначены 4 функции.                                                                                                 |                                                                                                       | • ANGLE+ (Увеличение угла)            |
| , i i i i i i i i i i i i i i i i i i i                                                                                                                                                               |                                                                                                       | • ANGLE- (Уменьшение угла)            |
|                                                                                                                                                                                                       |                                                                                                       | • <b>BW GAIN+</b> (см. страницу 5-82) |
|                                                                                                                                                                                                       |                                                                                                       | • BW GAIN-(см. страницу 5-82)         |

- Переключитесь на второй операционный уровень

- В функциональной группе CONFIG2 выберите **FUNCTION 1** для того, чтобы задать функцию верхней функциональной клавиши.

- Активируйте функцию (см. Раздел **Активация функций**, страница 4-12). При выбранной верхней опции можно определить функцию короткого нажатия клавиши.

- Используйте навигацию для выбора необходимой функции для короткого нажатия.

- Нажмите одну из функциональных клавиш для того, чтобы выбрать функцию для долгого нажатия клавиши. Выбор меняется для нижней опции, а название функции меняется на **(HOLD)func 1.** 

- Нажмите функциональные клавиши для того, чтобы выбрать функцию для долгого нажатия клавиши.

- В конце отключите функцию (HOLD)func 1.

- Переключитесь на функцию **FUNCTION 2** для того, чтобы задать функции нижней функциональной клавише.

# 5.4 Установка диапазона отображения (функциональная группа RANGE)



#### Примечание

Для точной настройки скорости звука и задержки преобразователя ознакомьтесь с Главой 5.8 Калибровка USM Go, страница 5-29.

| range          |
|----------------|
| 5.00 mm        |
| 2100 1111      |
| PROBE DELAY    |
| 0.000 µs       |
|                |
| VELOCITY       |
| 3200 m/s       |
| STEEL MILD (S) |
| DISPLAY DELAY  |
| 0.000 µs       |
|                |

Для настройки диапазона отображения необходима функциональная группа **RANGE**. Диапазон отображения должен быть настроен на используемую скорость звука (функция **VELOCITY**) или используемый преобразователь (**PROBE DELAY**).

- Переключитесь на первый операционный уровень
- Выберите функциональную группу **RANGE**.

#### ДИАПАЗОН

#### ЗАДЕРЖКА ПРЕОБРАЗОВАТЕЛЯ

Можно использовать функцию **RANGE** для установки диапазона Каждый преобразователь оборудован линией задержки между (отображаемого) проводимых измерений. излучателем и контактной поверхностью. Звуковой импульс должен Диапазон отображения может быть установлен в соответствии с сначала пройти линию задержки перед тем, как достигнет шагом предварительной или точной настройки (см. Раздел испытуемого объекта. Можно компенсировать влияние линии **Предварительная и точная настройка функций,** страница 4-10). задержки в преобразователе, благодаря функции **PROBE DELAY.** Диапазон настройки от 0,5 до 20000,0 мм.



#### Примечание

Задержку преобразователя можно установить в соответствии с шагом предварительной или точной настройки (см. **Раздел Предварительная и точная настройка функций**, страница 4-10).

Предел настройки для диапазона отображения зависит от настроек скорости звука и частотного диапазона Диапазон настройки от 0 до 1 000 000 мкс. (функция FREQUENCY в функциональной группе RECEIVER).



Если значение задержки преобразователя неизвестно, для ее определения ознакомьтесь с Главой 5.8 Калибровка USM Go, страница 5-29.

- Выберите функцию **RANGE**.
- При помощи функциональных клавиш или навигации установите требуемый диапазон отображения.
- Нажмите две функциональных клавиши одновременно для быстрой установки среднего значения (254,00 мм).
- Выберите функцию задержки преобразователя **PROBE DELAY**.
- При помощи функциональных клавиш или навигации установите задержку преобразователя.
- Нажмите две функциональных клавиши одновременно для установки значения на 0.

#### СКОРОСТЬ



#### Примечание

Если в качестве единиц измерения выбраны **мс**, функция скорости **VELOCITY** отключается по соображениям безопасности, и не отображается на экране.



#### ВНИМАНИЕ

Всегда проверяйте правильность установки функции скорости **VELOCITY**. Дефектоскоп USM Go рассчитывает все диапазон и расстояние на основе заданного здесь значения.

Функцию **VELOCITY** можно использовать для установки скорости - Выберите функцию **VELOCITY**. звука для испытуемого объекта.

- При помощи функциональных клавиш или навигации установите

Можно выбрать один из различных материалов и скорость звука для скорость звука. него. Дополнительные обозначения TR и TRANS относятся к различным значениям скорости звука в режиме поперечной волны возбуждения. В режиме продольной волны возбуждения, помимо названия материала дополнительная информация не отображается.

Если значение скорости отклоняется от значения выбранного материала при использовании навигации, название материала автоматически сменится обозначением **CUSTOM.** Скорость звука может быть установлена в соответствии с шагом предварительной или точной настройки (см. **Раздел Предварительная и точная настройка функций**, страница 4-10).

Диапазон настройки от 250 до 16000 м/с.

#### ЗАДЕРЖКА ОТОБРАЖЕНИЯ

Можно использовать эту функцию для определения отображения установленного диапазона (например, 250 мм) от поверхности испытуемого объекта или его сечения, начиная от последней точки. Это позволяет заменить отображаемые значения всего экрана, и следовательно также отображение значений, равных 0. Например, если отображение начинается от поверхности испытуемого объекта, необходимо установить значение задержки отображения **DISPLAY DELAY**, равной 0.

Можно установить задержку в соответствии с шагом предварительной или точной настройки (см. **Раздел Предварительная и точная** настройка функций, страница 4-10).

Диапазон настройки от -15,000 до 3500,000 мкс.

- Выберите функцию задержки отображения **DISPLAY DELAY**.

- При помощи функциональных клавиш или навигации установите скорость звука.

- Нажмите две функциональных клавиши одновременно для установки значения на 0.

#### 5.5 Настройка генератора (функциональная группа PULSER)

| VOLIAGE    |         |
|------------|---------|
|            | LOW     |
|            |         |
| ENEDCY     |         |
| ENERGY     |         |
|            | LOW     |
|            |         |
| DAMPING    |         |
| 0.11 1 110 | ED OUM  |
|            | SU OHM  |
|            |         |
| PRF MODE   |         |
| A          | UTO LOW |
|            | 400 Hz  |
|            | 400 112 |

Все функции настройки генератора импульсов находятся функциональной группе **PULSER**.

- Переключитесь на первый операционный уровень
- Выберите функциональную группу **PULSER**.

#### импульсов НАПРЯЖЕНИЕ ГЕНЕРАТОРА ИМПУЛЬСОВ

Функция **VOLTAGE** используется для настройки напряжения генератора импульсов.

Доступны следующие настройки:

- HIGH высокое напряжение
- LOW низкое напряжение

Настройка **HIGH** рекомендована для всех испытаний, в которых важна максимальная чувствительность, например при обнаружении дефектов малого размера. Настройка **LOW** используется для широкополосных преобразователей или в случае, когда необходимы узкополосные эхо-сигналы (улучшение разрешения по плоскости).

#### Генератор импульсов прямоугольного сигнала

Если USM Go оснащен генератором импульсов прямоугольного сигнала (опция) и если оно выбрано в качестве в качестве задействованного устройства (см. Раздел Выбор типа генератора импульсов, страница 5-75), значение напряжения устройства может быть установлено в пределах от 120 до 300 В с шагом 10 В. В таком случае, вместо функции ENERGY, доступна функция WIDTH.

| ^                                                                                                                          | ВНИМАНИЕ                                                                                                                                                         | ENERGY (энергия)                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>                                                                                                                   | Для уточнения максимально допустимого напряжения<br>необходимо свериться с технической спецификацией<br>преобразователя.                                         | Функция ENERGY используется для настройки степени проникновения или энергии звука.                                                                                                                                                                          |
| ~                                                                                                                          | Примечание                                                                                                                                                       | Доступны следующие настройки:                                                                                                                                                                                                                               |
| K)                                                                                                                         | Напряжение генератора импульсов и длительность                                                                                                                   | • HIGH - высокая энергия                                                                                                                                                                                                                                    |
|                                                                                                                            | импульса могут быть автоматически ограничены, в зависимости от настройки частоты повторения импульсов                                                            | • LOW - низкая энергия                                                                                                                                                                                                                                      |
|                                                                                                                            | (см. Раздел РЕЖИМ ЧПИ (частота повторения импульсов), страница 5-17). Эта функция помогает избежать накопления тепла на электронных частях генератора импульсов. | Настройка <b>HIGH</b> рекомендована для всех испытаний, в которых<br>важна максимальная чувствительность, например при обнаружении<br>дефектов малого размера. Настройка <b>LOW</b> используется для<br>широкополосных преобразователей или в случае, когда |
| - Выберите функцию VOLTAGE.<br>- Нажмите функциональные клавиши для выбора необходимого<br>напряжения генератора импульсов |                                                                                                                                                                  | необходимы узкополосные эхо-сигналы (улучшение разрешения по плоскости).                                                                                                                                                                                    |
|                                                                                                                            |                                                                                                                                                                  | - Выберите функцию <b>ENERGY</b> .                                                                                                                                                                                                                          |
|                                                                                                                            |                                                                                                                                                                  | - Нажмите функциональные клавиши для выбора необходимой настройки.                                                                                                                                                                                          |

#### WIDTH (Длительность импульса)

Функция доступна только тогда, когда выбран тип генератора импульсов прямоугольного сигнала (см. Раздел Выбор типа генератора импульсов, страница 5-75).

Функция **WIDTH** используется для установки длительности импульса генератора импульсов прямоугольного сигнала. Значение длительности может быть задано в пределах от 30 до 500 нс с шагом 10 нс.

## R.

#### Примечание

Напряжение генератора импульсов и длительность импульса могут быть автоматически ограничены, в зависимости от настройки частоты повторения импульсов (см. Раздел РЕЖИМ ЧПИ (частота повторения импульсов), страница 5-17). Данная функция используется для ограничения потерь сигнала.

#### - Выберите функцию **WIDTH**.

Следующее уравнение представляет приблизительные значения для - Нажмите функциональные клавиши для выбора необходимого соответствующей длительности сигнала: значения.

Номинальная длительность в наносекундах

= 500/частота преобразователя в МГц

Например, уравнение для частоты преобразователя 2,25 МГц дает результат:

Номинальная длительность в наносекундах = 500/2,25 нс = 222 нс

#### DAMPING (Подавление)

#### **PRF MODE (Частота повторения импульсов)**

Данная функция используется для приведения преобразователя в Частота соответствие. Функция Damping (Подавление) позволяет настроить отправленных начальных импульсов за секунду. Можно определить, подавление колебательного контура преобразователя для изменения какая необходима частота: максимально высокая, или будет высоты, ширины и разрешающей способности эхо-сигнала.

Доступны следующие настройки:

#### 1000 Ом

низкий уровень подавления, эхо-сигналы становятся выше и шире.

#### 50 Ом

снижается высота эхо-сигнала, но создаются более узкие эхо-сигналы более высокого разрешения.

- Выберите функцию **DAMPING**.

- Нажмите функциональные клавиши для выбора необходимого значения.

повторения импульсов обозначает количество достаточно низкого значения. Также есть три фиксированных шага и один шаг, настраиваемый пользователем.

Чем больше испытуемый объект, тем ниже должно быть значение ЧПИ для того, чтобы избежать шумовых эхо-сигналов. Тем не менее, частота обновления А-развертки становится ниже в случае малых значений ЧПИ; высокие значения необходимы, если требуется провести быстрое сканирование испытуемого объекта.

Лучший ЧПИ способ определить соответствующую экспериментальный: Начните сканирование с наибольшего значения и понижайте до полного исчезновения шумовых эхо-сигналов.

Доступны следующие настройки:

- AUTO LOW 400 Hz (Авт. низк. 400 Гц)
- AUTO MED 1000 Hz (Авт. сред. 1000 Гц)
- AUTO HIGH 1500 Hz (Авт. высок. 1000 Гц)
- MANUAL (Ручной)
- Выберите функцию ЧПИ **PRF MODE**.
- Нажмите функциональные клавиши для выбора необходимого значения.
- Если выбран режим **MANUAL**, установите значение при помощи навигации.



#### Примечание

Шумовые эхо-сигналы могут быть обнаружены и отсечены при помощи дополнительной функции обнаружения ЧПИ шумовых эхо-сигналов (см. Раздел **Детектор шумовых эхо-сигналов**, страница 5-58).

# 5.6 Настройка приемника (функциональная группа RECEIVER)

#### ЧАСТОТА

Данная функция позволяет установить частоту приемника в соответствии с частотой преобразователя. Доступны следующие настройки:

FREQUENCY • BROADBAND (Широкополосный) BROADBAND •1-5 МГц •2 МГц RECTIFY RF • 2,25 МГц •4 МГц DUAL • 5 МГц OFF • 10 МГц • 13 МГц REJECT 0% • 15 МГц - Выберите функцию FREQUENCY.

Все функции настройки приемника находятся в функциональной - Выберите функцию FREQUENCY. группе RECEIVER. - Нажмите функциональные клавиши для выбора необходимого

- Переключитесь на первый операционный уровень
- Выберите функциональную группу **RECEIVER**.

значения.

| RECTIFY (Выпрямление)                                                                                         | DUAL (разделение генератор импульсов-приемник)                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Функция <b>RECTIFY</b> используется для выбора режима выпрямления эхо-импульсов в соответствии с применением. | Можно использовать функцию <b>DUAL</b> для активации разделения генератора импульсов-приемника (см. Главу 3.3 <b>Подключение преобразователя</b> , страница 3-9).     |
| Доступны следующие настройки:                                                                                 |                                                                                                                                                                       |
|                                                                                                               | • OFF                                                                                                                                                                 |
| • FULLWAVE (Двухполупериодный режим)                                                                          | Одноэлементная работа; соединители преобразователя подключены                                                                                                         |
| Все полуволны отображаются на экране над основной линией                                                      | параллельно.                                                                                                                                                          |
| • POS HALFWAVE (Положительная полуволна)                                                                      | • ON                                                                                                                                                                  |
| На экране над основной линией отображаются только положительные полуволны.                                    | Двойной режим для использования двухэлементных преобразователей; один соединитель преобразователя подключен ко входу усилителя, начальный импульс поступает на другой |
| • NEG HALFWAVE (Отрицательная полуволна)                                                                      | соединитель преобразователя.                                                                                                                                          |
| На экране над основной линией отображаются только                                                             |                                                                                                                                                                       |
| отрицательные полуволны.                                                                                      | • THROUGH (Теневой метод)                                                                                                                                             |
|                                                                                                               | Теневой метод для использования два раздельных преобразователя;                                                                                                       |
| • RF (радио частота)                                                                                          | приемник подключен к одному соединителю преобразователя, и                                                                                                            |
| Выпрямление отсутствует. И положительные, и отрицательные                                                     | генератор импульсов подключен к другому. При теневом методе                                                                                                           |
| волны отображаются истинной амплитудой                                                                        | звуковая волна проходит сквозь испытуемый объект только один раз,                                                                                                     |
| - Выберите функцию <b>RECTIEY</b>                                                                             | все функции измерения расстояния и толщины стенок настраиваются соответствующим образом                                                                               |
|                                                                                                               |                                                                                                                                                                       |
| - Нажмите функциональные клавиши для выбора необходимой настройки.                                            | - Выберите функцию <b>DUAL</b> .                                                                                                                                      |
|                                                                                                               | - Нажмите функциональные клавиши для выбора необходимой настройки.                                                                                                    |

#### **REJECT (Отсечение сигналов)**

Функция **REJECT** используется для подавления нежелательных эхосигналов, например, конструктивный шум испытуемого объекта.

Высота в % отображает минимальную высоту, которой эхо-сигнал должен достичь для того, чтобы он был отображен на дисплее. Значение отсечения сигналов на может быть выше 80%.



#### ВНИМАНИЕ

Данная функция должна использоваться с осторожностью, поскольку вместе с нежелательным эхосигналом может быть подавлен сигнал от дефекта. Многие спецификации строго запрещают использование функции отсечения.

- Выберите функцию **REJECT**.

- Нажмите функциональные клавиши для выбора необходимого значения.

#### 5.7 Настройка стробов (функциональные группы GATE A и GATE B)

#### Задачи стробов

Стробы контролируют область испытуемого объекта, где предполагается наличие дефекта. Если эхо-сигнал превышает значение строба, или оказывается ниже, подается предупредительный сигнал (см Раздел **Сигналы,** страница 4-6).

• Стробы А и .В независимы по отношению друг к другу. Строб А также обладает функцией определения диапазона значений для строба В.

• Строб подбирает эхо-сигнал для измерения времени прохождения и амплитуды. Полученное значение отображается в строке измерений (см. Раздел **Строка измерений**, страница 4-5).

#### Отображение стробов

Функции настройки стробов находятся в функциональных группах Стробы отображаются различными цветами для более удобного **GATE A** и **GATE B**.

- Переключитесь на первый операционный уровень

- Выберите функциональную группу GATE A или GATE B.



A-START/B-START

# (начальная точка строба) Длительность строба может быть установлена в пределах диапазона Начальная точка строба может быть установлена в пределах диапазона от 0 до 27940 мм. Можно установить значение соответствии с шагом предварительной или точной настройки (см. Раздел Предварительная и точная настройка функций, страница 4-10). Можно установить улачици 4-10). - Выберите функцию A-START или B-START. - При помощи функцию функцию нальных клавиш или навигации установите - При помощи функциональных клавиш или навигации установите

A-WIDTH/B-WIDTH (длительность строба)

# A-THRESHOLD/B-THRESHOLD (порог отклика и измерения строба)

Пороговое значение строба А или В может быть установлено в пределах диапазона от 5 до 95% высоты экрана для подачи звукового сигнала, если указанное значение превышено или не достигнуто.

В режиме радиочастоты может быть установлен дополнительный порог в пределах от 5 до -95 %.

- Выберите функцию **A-THRESHOLD** или **B-THRESHOLD**.

- Нажмите функциональные клавиши для выбора необходимого значения.

# ТОF MODE (Отображение времени прохождения • FIRST PEAK (Первый пик) сигнала)

Измерение пути звука при помощи оценки эхо-сигнала зависят от выбранной точки измерений.

Доступны следующие настройки:

#### • РЕАК (измерение пика)

Амплитуда и время прохождения сигнала измеряются при наивысшем значении амплитуды в пределах строба с максимальным разрешением прибора.

#### • FLANK (измерение фронта)

Амплитуда измеряется аналогично случаю измерения пика **PEAK**, тем не менее, время прохождения сигнала измеряется в первой точке пересечения эхо-сигнала и строба с максимальным разрешением прибора.

#### • J-FLANK

Время прохождения сигнала измеряется аналогично случаю измерения амплитуды фронта **FLANK**, определенному с максимальным разрешением прибора, перед первым изменением направления вниз, когда пороговое значение строба не получено в очередной раз. В случае превышения значений для функции **RANGE**, несколько точек могут объединиться в одну. В таких случаях, оценка более не относится к отображаемой А-развертке.

Измерение проводится аналогично случаю **J-FLANK**, при любом разрешении экрана. Если оценка с использованием отображаемой А-развертки имеет исключительно важное значение, необходимо выбрать режим измерения первого пика **FIRST PEAK**.





#### ВНИМАНИЕ

В любом случае, настройки точки измерения в режиме отображения времени прохождения сигнала TOF mode для калибровки и последовательных испытаний должны быть идентичными. Иначе может возникнуть ошибка измерений.

- Выберите функцию отображения времени прохождения сигнала **ТОF MODE**.

- Нажмите функциональные клавиши для выбора необходимой настройки.

#### Начальная точка строба В

| GATEMODE      |  |  |  |  |  |  |  |
|---------------|--|--|--|--|--|--|--|
| GATE A LOGIC  |  |  |  |  |  |  |  |
| NEGATIVE      |  |  |  |  |  |  |  |
|               |  |  |  |  |  |  |  |
| GATE B LOGIC  |  |  |  |  |  |  |  |
| POSITIVE      |  |  |  |  |  |  |  |
|               |  |  |  |  |  |  |  |
| B START MODE  |  |  |  |  |  |  |  |
| IP            |  |  |  |  |  |  |  |
|               |  |  |  |  |  |  |  |
| OUTPUT SELECT |  |  |  |  |  |  |  |
| A (-)         |  |  |  |  |  |  |  |
|               |  |  |  |  |  |  |  |
|               |  |  |  |  |  |  |  |

Нормальное расположение точки начального импульса строба В (функция **B-start**) аналогично случаю строба А.

Можно определить начало отправки строба В относительно события строба А. Данная функция также определяется как автоматическое отслеживание стробов.

Если событие строба A отстутствует, начальная точка строба B аналогична значению функции **A-start**.

- Переключитесь на второй операционный уровень

- В функциональной группе **CONFIG2** выберите функцию **В START MODE.** 

- Нажмите функциональные клавиши для выбора необходимой настройки.

При выбранной настройке **A** последующий строб B автоматически пропускается при пропуске точки начального строба A.

Отслеживание не влияет на длительность и пороговое значение строба В.

Отслеживание дополнительного строба С аналогично отслеживанию строба В. Кроме того, строб С может быть согласован с событием строба В.

#### Автоматическая регулировка высоты строба



Дефектоскоп USM Go при помощи функции AGT (Автоматическое регулирование порога строба) может автоматически корректировать высоту стробов в зависимости от амплитуды эхо-сигналов соответствующих стробов.

В этом случае, определение высоты строба выполняется не в % высоты экрана, а в % амплитуды эхо-сигнала.

Значение может быть задано в пределах от 5 до 95%, и от -5 до -95%.

Данная функция недоступна для дополнительного строба С.

- Переключитесь на второй операционный уровень

- В функциональной группе **EVAL** выберите функцию Автоматического регулирования порога строба **AGT**.

- Нажмите функциональные клавиши для выбора необходимого строба для автоматической корректировки.

Если активирована функция AGT для одного или двух стробов, настройка порога THRESHOLD на первом операционном уровне в режиме радиочастоты RF mode отображается не как %, а как AGT = %.



#### 5.8 Калибровка дефектоскопа USM Go

#### Калибровка диапазона отображения

Перед началом работы с USM Go необходимо его откалибровать: Необходимо откорректировать скорость распространения звука в среде и диапазон отражения, а также установить задержку преобразователя в зависимости от материала и размеров испытуемого объекта.

В целях обеспечения надлежащей и безопасной эксплуатации дефектоскопа USM Go, необходима соответствующая подготовка оператора в области технологий ультразвуковых испытаний.

Ниже приведены несколько примеров общих методов калибровки для некоторых испытаний. Кроме того, USM Go обладает функцией полуавтоматической калибровки (см. Раздел Случай В: Неизвестная скорость распространения звука в среде, страница 5-31).

#### Выбор точки измерения

Измерение пути звука при помощи оценки эхо-сигнала зависят от выбранной точки измерений (см. Раздел **Режим отображения времени прохождения сигнала ТОГ МОДЕ**, страница 5-25).

#### ВНИМАНИЕ

В любом случае, настройки точки измерения в режиме отображения времени прохождения сигнала TOF mode для калибровки и последовательных испытаний должны быть идентичными. Иначе может возникнуть ошибка измерений.

| Калибровка прямых и наклонных преобразователей                                                                                             | Пример                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Случай А: Известная скорость распространения звука в среде                                                                                 | Калибровка для диапазона калибровки 100 мм выполняется по стандарту К1 (толщина 25 мм) для плоской поверхности.                                                                                                         |  |  |  |  |  |  |  |
| - Установите известную скорость распространения звука в среде (функциональная группа <b>RANGE</b> )                                        | - Установите значение диапазона <b>RANGE</b> равным 100 мм.                                                                                                                                                             |  |  |  |  |  |  |  |
| - Соедините преобразователь с калибровочным блоком.                                                                                        | - Установите известную скорость звука в среде для материала, равной<br>5920 м/с (см. ISO10863).                                                                                                                         |  |  |  |  |  |  |  |
| - Установите требуемый диапазон отображения при помощи функции <b>RANGE</b> . Калибровочный эхо-сигнал должен отобразиться на экране.      | <ul> <li>Установите строб на первый калибровочный эхо-сигнал (от 25 мм).</li> <li>В полосе измерений отобразится звуковой путь. Если это значение не равно 25 мм, откорректируйте настройку функцию задержки</li> </ul> |  |  |  |  |  |  |  |
| <ul> <li>Расположите строб на одном из калибровочных эхо так, чтобы<br/>путь звука эхо-сигнала отобразился на полосе измерения.</li> </ul> | преобразователя <b>PROBE DELAY</b> таким образом, чтобы значение звукового пути равнялось 25 мм.                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                         |  |  |  |  |  |  |  |

- После этого, откорректируйте настройку функции задержки Это позволит завершить калибровку USM Go в соответствии со преобразователя **PROBE DELAY** таким образом, чтобы на полосе скоростью распространения звука в среде, равной 5920 м/с измерения отразился правильный звуковой путь калибровочного диапазоном калибровки для используемого преобразователя, равной эхо.

# звука в среде

Используйте функцию полуавтоматической калибровки дефектоскопа USM Go с функциями группы автокалибровки AUTO-CAL для данного случая калибровки.

| gate a sta   | ort<br>0.72 mm |
|--------------|----------------|
| s-ref1       | 12.50 mm       |
| s-ref2<br>10 | 00.00 mm       |
| RECORD       | OFF            |

Случай В: Неизвестная скорость распространения - Установите требуемый диапазон отображения при помощи функции RANGE. Два выбранных калибровочных эхо-сигнала должны отобразиться на экране. Установите предел таким образом, чтобы второй калибровочный эхо-сигнал отображался на правильной половине экрана.

- Переключитесь на функциональную группу AUTOCAL.

- Введите расстояния двух калибровочных эхо-сигналов для функций полуавтоматической калибровки S-REF 1 и S-REF 2.

- Установите строб на первый калибровочный эхо-сигнал (A-START).

- Переключитесь на функцию записи **RECORD** и нажмите функциональную клавишу.

- Нажмите на функциональную клавишу повторно для записи данных первого калибровочного эхо-сигнала.

- Переместите строб на второй калибровочный эхо-сигнал.

- Переключитесь на функцию записи **RECORD** снова и нажмите функциональную клавишу для записи данных второго калибровочного эхо-сигнала.

Необходимо ввести расстояния (линии) двух калибровочных эхосигналов в качестве настроек по умолчанию. USM Go проведет проверку достоверности, расчет скорости распространения звука в среде и задержки преобразователя, а также автоматически выставляет параметры, если достоверность подтверждена. В противном случае появится сообщение об ошибке.

### Правильность калибровки подтверждается сообщением **AUTOCAL Пример COMPLETE.**

- Введите значения двух калибровочных отметок (толщины) **S-REF 1** (5,00 мм) и **S-REF 2** (20.00 мм).

Дефектоскоп USM Go автоматически определит скорость (5,00 мм) и S-REF 2 (20.00 мм). распространения звука в среде и задержку зона, а также установит значения соответствующих функций.



#### Примечание

Если прибору не удается выполнить корректную калибровку на основе введенных значений и записанных эхо-сигналов, на экране отобразится соответствующее сообщение об ошибке. В это случае проверьте значения полос калибровки и запишите значения калибровочных эхо-сигналов повторно.

| GAIN 1.0<br>17.5 de | ) SA^<br>3 mu | 6. | 28 | AXA<br>X |          | 70  | 0 |        |      | D                 |    |    |      |
|---------------------|---------------|----|----|----------|----------|-----|---|--------|------|-------------------|----|----|------|
| N                   | G             |    |    |          | •        |     |   |        |      |                   |    | -  |      |
| gate a sta          | rt            |    | Ľ  | •        |          | •   |   |        |      | •                 |    | -  |      |
|                     | 4.00 mm       |    |    | •        | ,        | •   |   |        |      | •                 |    | -  |      |
| s-ref1              |               |    | 1  | ,        | 11       |     |   | ,      |      |                   | ,  | -  |      |
| 3-1611              | 5.00 mm       |    | 1  | •        | 1.       | •   |   |        | *    | *                 |    | 1  |      |
| c_rof2              |               |    |    |          |          |     |   |        |      |                   |    | 1  |      |
| 2                   | 0.00 mm       |    | Ľ  |          |          |     |   |        |      | •                 |    | -  |      |
| RECORD              |               |    |    |          |          | +   |   |        |      | +                 |    |    |      |
| RECORD              | OFF           |    | I. | ۰,       | 11       |     |   |        |      |                   |    |    | ١    |
| AUTOCAL             | AUTOANO       | 3  | BU | OCK      | TI<br>TI | RIG | Ш | لعليمه | llac | - <del>1</del> 94 | Mê | in | بالد |

- Установите строб на первый калибровочный эхо-сигнал.
| GAIN 1.0 SA*<br>17.5 dB m | 6. | 28   | AMA<br>X |      | 71  | 0      |   | C | ) |       | 5      |
|---------------------------|----|------|----------|------|-----|--------|---|---|---|-------|--------|
| v                         |    |      |          | •    |     |        |   |   |   |       |        |
| GATE A START              |    | Ľ.   | +        | -    | +   |        | ÷ | - | + |       | -      |
| 4.00 mm                   |    | ۱÷.  | +        | ,    | +   | 1      | ٠ | - | + |       | 1      |
|                           |    | •    | *        | 11   | *   |        | - |   |   | ,     | -      |
| 5-REF1<br>5.00 mm         |    | •    | •        | ŀ.   | •   |        | • | * | * | •     |        |
| S-REF2                    |    |      |          |      | ٠   |        |   |   |   |       |        |
| 20.00 mm                  | :  | ßr.  | +        | 1 -  | ÷   |        | • |   | ٠ |       | -      |
| RECORD                    |    | lk-  | +        |      | +   |        |   | - | 1 |       | -      |
| S-REF1?                   |    | III, |          | 11in | 111 |        |   |   | - | . 251 |        |
| AUTOCAL AUTOAN            | G  | RI   | оск      | TR   | IG  | - DUCA |   |   |   | 3-6-5 | A.NIC. |

- Запишите значения первого калибровочного эхо-сигнала.

- Установите строб на второй калибровочный эхо-сигнал и .запишите данные второго калибровочного эхо-сигнала.

| GAIN 1.0 SA* 2<br>13.5 dB m 2 | 1.18    | axa<br>X |   | 73   | ) |     | 0 |      | 6 |
|-------------------------------|---------|----------|---|------|---|-----|---|------|---|
| N                             |         |          |   |      |   |     | + |      |   |
| gate a start<br>19.05 mm      |         | ÷        |   | ÷    |   |     | ÷ |      |   |
|                               | 12      |          | , |      |   | , , | • |      | - |
| 5.00 mm                       |         |          |   |      |   | • • | * | •    |   |
| s-ref2                        | 1.      |          |   |      |   |     | ÷ |      |   |
| 20.00 mm                      |         | ٠        |   | +    |   | • • | + | •    | - |
| RECORD                        | 1       | ٠        |   | +    |   | , . | + | Ľ.   | - |
| S-REF2?                       | u. 1010 | •        |   | . In |   | • • | - | 25.0 |   |
| AUTOCAL AUTOANG               | BU      | ОСК      | Т | RIG  |   |     |   |      |   |

- Корректная калибровка выполнена и подтверждена.

| GAIN 1.0 SA*<br>13.5 dB m | 20.    | 00    | AMA<br>X |        | 72    | 0    |         | 0     | l         |        | 0  |
|---------------------------|--------|-------|----------|--------|-------|------|---------|-------|-----------|--------|----|
| N                         | G [    |       |          |        |       | :    |         |       | •••       |        | -  |
| aate a start              | -      | •     | +        |        | +     |      |         |       | •         |        | 1  |
| 19.05 m                   | m      | ,     | *        | ,      | *     |      | ٠       |       | *         |        |    |
| 44                        | ╡.     | ,     | *        | ,      |       | -    | ,       | ,     | 1         | ,      | -  |
| s-ref1                    |        |       |          |        | *     |      | •       | 4     | +         | ·      | 1  |
| 5.00 1                    | •••••  |       |          |        |       |      |         |       |           |        | 4  |
| s-ref2                    |        |       | +        |        | +     | -    | ٠       |       |           |        | 1  |
| 20.00 m                   | ım     |       |          |        | +     |      | ٠       |       |           |        | -  |
| PECOPD                    |        |       |          |        |       |      |         |       | 4         |        |    |
| 0                         | FF     |       |          |        | +     |      |         |       | Щ.        |        | -  |
| •                         |        | Ant   |          |        | , In' |      |         |       | المتقالية | . 25.0 | i. |
| AUTOCAL COMPLET           | E, VEL | OCIT\ | ( = 593  | 5 m/s. | PROBE | DELA | Y = 0.4 | 25 µs |           |        |    |

Значения скорости распространения звука в среде и задержки Калибровка двухэлементного С использованием



## преобразователя можно получить в функциональной группе RANGE. преобразователя

Двухэлементные преобразователи используются специально для толщины стенок. При использовании измерения данных преобразователей следует принимать во внимание следующие их специальные возможности:

#### V-path error (Ошибка расстояния однократного отражения)

Двухэлементный преобразователь производит V-образный звуковой путь: генератор импульсов, отражение от задней стенки и возвращение на приемник. Ошибка расстояния однократного отражения влияет на точность измерения. В таком случае необходимо выбрать два значения толщины стенок, которые зададут пределы, охватывающие ожидаемое значение измерения толщины для калибровки. Таким образом, ошибка расстояния однократного отражения в значительной степени может быть скорректирована.

## Higher material velocity (Скорость распространения звука в среде ниже указанной)

Возникновение ошибки расстояния однократного отражения означает, что указанная скорость распространения звука в материале испытуемого предмета ниже полученной при калибровке, особенно в Это стандартная случае малой толщины. ситуация для двухэлементных преобразователей, позволяющая компенсировать ошибку расстояния однократного отражения.

При малой толщине стенок описанное выше явление приводит к - Установите порог строба на требуемое значение высоты для падению амплитуды эхо-сигнала, который необходимо принимать измерения звуковых путей на фронтах эхо-сигналов. во внимание, особенно при толщине стенок <2 мм.

- Переключитесь на функциональную группу **AUTOCAL.** Для калибровки необходим блок со стенками различной, ступенчато изменяющейся толщины. Толщина стенок должна выбираться таким - Введите две калибровочные отметки (значения толщины) **S-REF 1** образом, чтобы охватывать ожидаемую толщину стенок объекта. и **S-REF 2.** 

Использование полуавтоматического режима рекомендовано для - Установите строб на первый калибровочный эхо-сигнал (функция калибровки двухэлементного преобразователя. A-START).

- Установите необходимый диапазон испытания.

- Изменяйте задержку преобразователя, пока две калибровочные - После этого, установите преобразователь и калибровочный блок со отметки не будут отображаться в указанном диапазоне. второй калибровочной отметкой и откорректируйте высоту эхо-сигнала таким образом, чтобы она примерно равнялась высоте первой

- Запишите значения первого калибровочного эхо-сигнала.

 Установите функции генератора импульсов и приемника для калибровки эхо-сигнала. преобразователя, используемого при испытании.

- В случае необходимости переместите строб на второй - Установите функцию отображения отображения времени калибровочный эхо-сигнал. прохождения сигнала **TOF MODE** (функциональная группа **GATE A)** - Запишите значения второго калибровочного эхо-сигнала. на измерение амплитуды фронта **FLANK.** 

- Выберите коэффициент усиления таким образом, чтобы наибольшая амплитуда эхо-сигнала отображалась приблизительно на всю высоту экрана.

#### 5 Эксплуатация

Правильность калибровки подтверждается сообщением **AUTOCAL COMPLETE.** Скорость распространения звука в среде и задержка преобразователя установлены и отображаются на экране.

- Проверьте калибровку на одной или нескольких известных калибровочных отметках, например, используя калибровочный блок со стенками различной, ступенчато изменяющейся толщины.



#### Примечание

Следует всегда помнить о том, что значение измерения определяется в точке пересечения строба и фронта эхофункция отображения если времени сигнала, прохождения сигнала **TOF MODE** настроена на измерение амплитуды фронта FLANK. Правильная настройка высоты эхо-сигнала и порога строба имеет решающее значение для точности калибровки и измерения! В этой связи может помочь использование функции автоматического регулирования порога строба AGT (см. Раздел Автоматическая регулировка высоты строба, страница 5-28).

Калибровка или измерение в режиме измерения пика **PEAK** требуют навыков использования двухэлементных преобразователей с целью выбора и установки корректных значений эхо-сигналов.

## 5.9 Проведение измерений

## Общие примечания

Обратите внимание на следующие примечания относительно использования дефектоскопа USM Go для измерений:

• Обязательное условие для измерения - всегда правильная калибровка (скорость распространения звука в среде, задержка преобразователя).

• Все измерения амплитуды производятся при наивысшем или первом сигнале строба.

• Все измерения расстояния производятся в точке пересечения строба и первого фронта эхо-сигнала (TOF MODE = FLANK, J-FLANK, FIRST PEAK) или на пике наивысшего эхо-сигнала строба. (TOF MODE = PEAK).

• Если амплитуды эхо-сигналов строба не превышают 5 % от высоты

экрана, все соответствующие звуковые пути и данные по амплитуде **Gate B** (строб В) установлен на значение 80 % от высоты экрана для от подлежат отклонению. Это позволяет быстро отсечь произвольные измеренного звукового пути **SB/ =** 78.87 мм показания шума на фоне для дефектоскопа USM Go.

Следующий пример демонстрирует зависимость измерения расстояния от формы волны эхо-сигнала, то есть от высоты порога строба и таким образом от выбора точки пересечения сигнала.



**Gate A** (строб A) установлен на значение 20% от высоты экрана для измеренного звукового пути **SA/ =** 78.46 мм

#### 5.10 Измерение Примечание разницы эхо-сигнала В зависимости от выбранного режима оценки, также отражателя и опорного эхо-сигнала в дБ может быть отображена одна из функциональных групп: (функциональная группа dB REF) DAC/TCG, DGS, AWS D1.1, JISDAC или CNDAC (см. Раздел РЕЖИМ ОЦЕНКИ, страница 5-73). MODE OFF Доступны следующие функции: REFERENCE (NO REF) MODE (Режим) Активация измерения разницы дБ RECORD (NO REF **REFERENCE** (Опорное значение усиления) Отображение опорного значения усиления DELETE REF **RECORD (Запись)** Хранение опорного эхо-сигнала В можете оценить эхо-сигналы отражателя при помощи опорных эхо- DELETE REF (Удалить опорное значение) сигналов. Функциональная группа оценки уровня опорного сигнала в Удаление опорного значения эхо-сигнала дБ. dB REF обеспечивает все необходимые функции для сравнения высоты эхо-сигнала отражателя и опорного эхо-сигнала. Функции приводятся в той последовательности, в которой они

требуются в работе.

- Переключитесь на первый операционный уровень

- Выберите функциональную группу **dB REF**.

Запись опорного эхо-сигнала

| Перед применением измерения дБ разницы, необходимо<br>первоначально записать опорный эхо-сигнал.    | Можно удалить сохраненное значение опорного эхо-сигнала в любое<br>время.                                                                                                                 |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Если опорный эхо-сигнал уже записан, его необходимо удалить перед записью нового (см. Раздел ниже). | <ul> <li>При необходимости выберите функцию удаления опорного эхо-<br/>сигнала DELETE REF и нажмите функциональную клавишу для<br/>удаления сохраненного опорного эхо-сигнала.</li> </ul> |
| <ul> <li>Измерение пика опорного эхо-сигнала в соответствии с инструкциеи</li> </ul>                |                                                                                                                                                                                           |
| по испытаниям.                                                                                      | <ul> <li>Нажмите две функциональных клавиши одновременно для подтверждения удаления.</li> </ul>                                                                                           |
| - См. функцию                                                                                       |                                                                                                                                                                                           |

Удаление опорного эхо-сигнала

- A-start для расположения строба А на опорном эхо-сигнале.

- Переключитесь на функцию записи **RECORD** и нажмите функциональную клавишу. Опорный эхо-сигнал записан и сохранен.

| Сравнение высоты эхо-сигналов                                                | - Переключитесь на функциональную группу оценки EVAL на втором операционном уровне.                                                |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Можно сопоставить эхо-сигналы от выбранных отражателей опорным эхо-сигналом. | с<br>- Используйте функции выведения на экран <b>READING</b> для выбора<br>одного или нескольких значений для отображения в полосе |
| Следующие значения могут быть отображены в полосе измерений:                 | измерений.                                                                                                                         |
| • dBrA                                                                       | - А-start для расположения строба А на эхо-сигнале.                                                                                |

разница дБ между опорным эхо-сигналом и наивысшим эхосигналом строба А.

## **DING** для выбора жения в полосе

- для расположения строба А на эхо-сигнале.
- Выберите функцию выбора режима МОDE и нажмите функциональную клавишу для ее активации.

#### • A%rA

Амплитуда сигнала строба А в процентах в отношении к опорной Выбранные показания отображаются в полосе измерения. амплитуде, принятой за 100%.

#### • dBrB

разница дБ между опорным эхо-сигналом и наивысшим эхосигналом строба В.

#### • A%rB

Амплитуда сигнала строба В в процентах в отношении к опорной амплитуде, принятой за 100%.



#### Примечание

Разница дБ не зависит от изменения коэффициента усиления.

| +0.0 1.0 dBrA<br>33.0 dBr dB | O. O | A%rA<br>X | 1 | 00 | dBrB<br>dB | -6.  | 7   | AxirB<br>X | 46   | Ô  |
|------------------------------|------|-----------|---|----|------------|------|-----|------------|------|----|
| NA                           |      |           |   | •  |            |      |     | ٠          |      |    |
| MODE                         |      | +         |   | 1  | -          | +    | ,   | +          |      |    |
| ON                           |      | *         |   | •  | -          | *    |     | *          | •    |    |
|                              |      | +         |   |    |            | +    | ·   | +          |      |    |
| REFERENCE                    |      | +         | , | •  | ÷          |      |     | +          |      |    |
| 55.0dB : 8/%                 |      |           |   |    |            |      |     |            |      |    |
| RECORD                       |      | +         |   | _  | _          |      |     |            |      |    |
| (STORED)                     |      |           |   |    | -          |      |     |            |      |    |
|                              |      |           |   |    |            |      |     |            | _    |    |
| DELETE REF                   | •    | +         | • | •  | -          | +    |     | •          |      |    |
|                              |      | +         | , | -  | 1          | •    | ,   | +          | ·    |    |
| SETUP GATE A                 | Ent- | 1         |   |    | <u> </u>   | have | 110 | •          | 1400 | ~~ |

## 5.11 Анализ сварных швов (функциональная группа AWS D1.1)



Оценка дефектов в сварных швах может выполняться в соответствии со спецификацией AWS D1.1. Соответствующие функции находятся в функциональной группе **AWS D1.1**.

- Переключитесь на второй операционный уровень

- В функциональной группе оценки **EVAL**, выберите функцию режима оценки **EVAL MODE** и используйте функциональные клавиши для выбора метода оценки **AWS D1.1**.

- Переключитесь на первый операционный уровень
- Выберите функциональную группу **AWS D1.1**.

## Анализ сварных швов в соответствии со где: спецификацией AWS D1.1

#### • А = усиление отраженного дефектом сигнала (в дБ)

Анализ дефектов сварных швов в соответствии со спецификацией максимал AWS D1.1 основан на оценке амплитуды сигнала. В рамках данного метода амплитуда эхо-сигнала отраженного дефектом сигнала. сопоставляется с амплитудой эхо-сигнала известного контрольного отражателя. Кроме того, затухание сигнала в испытуемом объекте также принимается во внимание.

Результатом становится значение в дБ, называемое классом дефекта. Класс дефекта D рассчитывается по формуле:

D = A - B - C

# Анализ дефектов сварных швов в соответствии со спецификацией Максимальный коэффициент усиления прибора, при котором AWS D1.1 основан на оценке амплитуды сигнала. В рамках данного отражение дефектом эхо-сигнала составляет 50% (±5%) высоты эхо-

#### • В = опорное значение усиления (в дБ)

Максимальный коэффициент усиления, при котором максимальное значение опорного эхо-сигнала составляет 50% (±5%) высоты эхосигнала (например, боковое цилиндрическое отверстие диаметром 1,5 мм стандартного образца V1 или стандарта IIW, тип 1 или 2).

#### • С = коэффициент затухания звука (в дБ)

Значение рассчитывается по формуле: С = 0,079 дБ/мм • (s - 25.4 мм), где s = звуковой путь отраженного дефектом эхо-сигнала.

Поправка коэффициента затухания звука рассчитывается и отображается прибором автоматически. Значение устанавливается на 0 для звуковых путей равных или короче 25,4 мм (1 дюйм).

### • D = класс дефекта (в дБ)

Это значение является результатом оценки по спецификации AWS. Расчет производится дефектоскопом USM Go по приведенной выше формуле.

#### Примечание

Перед началом анализа по AWS D1.1 необходимо убедиться, что все опции прибора для проведения специальных испытаний откалиброваны.

Необходимо помнить, что пиковое значение амплитуды эхо-сигнала должно отображаться на 45-55% высоты экрана. При другом отображении амплитуды анализ невозможен.

- Заполните контактной жидкостью стандартное боковое цилиндрическое отверстие 1,5 мм и установите в него зонд. Максимально усильте эхо-сигнал из отверстия.

- Выберите функцию настройки строба **A-START** и настройте строб А на опорный эхо-сигнал.

- Измените коэффициент усиления таким образом, чтобы опорный эхо-сигнал отображался на 50% высоты экрана.

- Переключитесь на функциональную группу AWS D1.1.

- Выберите функцию настройки усиления строба В **B REFERENCE** и подтвердите сохранение значения опорного коэффициента усиления.

|                          |      | _          |     |    |              |      |                 |          |      |    | _   |
|--------------------------|------|------------|-----|----|--------------|------|-----------------|----------|------|----|-----|
| GAIN 1.0 RM<br>32.0 dB % | 47   | SAT<br>Min | 21. | 40 | DA           | 15.  | 13              | 89*<br>m | 3. 9 | 12 | 0   |
| N .0                     |      |            |     |    |              |      |                 |          |      | 1  |     |
| A INDICATION             |      |            |     |    | -            |      |                 |          |      | Ē  |     |
| 32.0 dB                  | ,    | *          |     | ٠  | -            | *    | ,               | +        |      | 2  |     |
| (RUNNING)                | ,    |            | ,   | ,  |              |      | ,               |          | ,    | 2  |     |
| B REFERENCE              |      |            |     |    |              |      |                 |          |      | 3  |     |
| 32.0 dB                  |      |            |     |    | -            |      |                 |          |      | -  |     |
|                          |      |            |     |    | ĥ            |      |                 |          |      |    |     |
| C ATTENUATION            | •    | +          | •   | ٠  | ١ <b>١</b> . | +    |                 | +        |      | 1  |     |
| 0.0 dB                   |      | +          |     | ٠  | 111          | ٠    |                 | ٠        |      | -  |     |
| D D1.1 RATING            |      | +          | •   | ÷  | ШŪ           | ÷    |                 | +        |      |    |     |
| +0 dB                    | ,    | +          | ,   | ٠  | 19 H         | ٨٠.  | Ma <sup>r</sup> | +        |      | -  |     |
|                          | 15.0 |            |     |    | ar - 11      | mail | In              | de la c  | 28.0 |    | -ch |
| AWS DL1 GATE A           |      |            |     |    |              |      |                 |          |      |    |     |

- Установите преобразователь на испытуемый объект для оценки отраженного дефектом эхо-сигнала.

- Выберите функцию настройки начальной точки строба **A-START** и настройте строб A на эхо-сигнал отраженный от дефекта.

- Измените коэффициент усиления таким образом, чтобы отраженный дефектом эхо-сигнал отображался на 50% высоты экрана.

- Переключитесь на функциональную группу AWS D1.1.

- Сохраните текущее значение усиления при помощи функции отображения значения строба А **A INDICATION.** Значение коэффициента усиления сохранено.

USM Go автоматически определяет значения переменных С и D спецификации AWS. Таким образом, оценку значения параметра D можно произвести при помощи соответствующих требований спецификации AWS D1.1.

| GAIN 1.0 AKA<br>27.0 dB K | 51 | SAT                 | 74. | 52 | 091          | 52.        | 69 Ľ                  | A^ I        | 11.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | }           |
|---------------------------|----|---------------------|-----|----|--------------|------------|-----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                           |    | par.                |     |    |              | •          |                       | •••••       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - pars<br>- |
| A INDICATION              | ,  |                     | ,   | *  | 1            |            | ,                     | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |
| 26.3 dB                   |    | +                   |     | +  |              | +          |                       | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |
| (RUNNING)<br>B REFERENCE  | ,  | +                   |     | *  |              | •          | •                     | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |
| 32.0 dB                   | ,  |                     | ,   |    |              |            |                       | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |
| C ATTENUATION             |    |                     |     |    |              |            |                       | • • • • • • | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -           |
| C ALTENUATION             |    | •                   | •   | *  |              |            |                       | *           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |
| 5.0 00                    | ,  |                     |     |    |              |            |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |
| D D1.1 RATING             |    | *                   |     | +  |              | t          |                       | *           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |
| -10 gR                    | 0  | •                   | •   | •  | 1            | 1          | •                     |             | 125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| AWS D1.1 GATE A           |    | - to a state of the |     |    | and a second | And Sector | and the second second |             | and the second se | _           |

## 5.12 Расчет положения дефекта при помощи наклонных преобразователей



Функции для установки параметров расчета положения дефектов, используемые с наклонным преобразователем, находятся в функциональной группе автоматической калибровки AUTOCAL > столбец TRIG на первом операционном уровне, а также в функциональной группе оценки EVAL, , столбец TRIG на втором функциональном уровне.

- При необходимости переключитесь на второй операционный уровень.

- Выберите функциональную группу оценки **EVAL**.

В дополнение к звуковому пути S, (уменьшенное) проекционное расстояние и истинная глубина расположения дефекта рассчитываются автоматически и отображаются в полосе измерений при помощи функций данной группы.



• Проекционное расстояние (PD)

Расстояние от точки указания луча преобразователя до местоположения дефекта, проецируемое на поверхность.

#### • Уменьшенное проекционное расстояние rPD

Расстояние от переднего края зонда до местоположения дефекта, функция PROBE ANGLE используется для регулировки угла падения проецируемое на поверхность.

#### • Глубина d

Расстояние от местоположения дефекта до поверхности.

При использовании наклонных преобразователей зонда USM Go также может выполнять расчет отрезка L до следующей точки • OFF (функция отключена) отражения. Этот отрезок может отображаться в виде значения LA, **LB**, или **LC** в полосе измерений.



## РЕГУЛИРОВКА УГЛА ПРЕОБРАЗОВАТЕЛЯ

луча зонда относительно материала испытуемого объекта. Это значение требуется для автоматического расчета расположения дефекта.

Доступны следующие настройки:

• 30° ... 90°

Можно установить значение соответствии С шагом В предварительной настройки Раздел или точной (см. Предварительная и точная настройка функций, страница 4-10).

Когда настройки произведены, под значением угла наклона дополнительно отображается его тангенс.

Данное значение обеспечивает хорошее обнаружения точки отражения, следующей после точки выхода луча преобразователя, с учетом толщины испытуемого объекта.

## Пример: Толщина объекта

• Угол наклона 45°, К = 1, Первое отражение через 20 мм

• Угол наклона 60°,

К = 1,73, Первое отражение через 1,73 × 20 мм = 34,6 мм • Угол наклона 70°,

K = 2,75, Первое отражение через 2,75 × 20 мм = 55 мм • Угол наклона 80°,

К = 5,67, Первое отражение через 5,67 × 20 мм = 113,4 мм

- Выберите функцию задержки зонда **PROBE ANGLE**.

- Нажмите функциональные клавиши для выбора необходимой настройки.

## НАСТРОЙКА ТОЛЩИНЫ

Функция **THICKNESS** используется для настройки толщины испытуемого объекта. Это значение требуется для автоматического расчета истинной глубины расположения дефекта.

Диапазон настройки от 1,00 до 27940,00 мм.

Можно установить значение в соответствии с шагом предварительной или точной настройки (см. Раздел **Предварительная и точная настройка функций,** страница 4-10).

- Выберите функцию установки толщины THICKNESS.

- При помощи функциональных клавиш или навигации установите требуемое значение.

## НАСТРОЙКА СТРЕЛЫ ПРЕОБРАЗОВАТЕЛЯ НАСТ

## НАСТРОЙКА НАРУЖНОГО ДИАМЕТРА

Функция **X VALUE** используется для установки значения стрелы Функция настройки наружного диаметра **O-DIAMETER** используется преобразователя от при работе с цилиндрическими поверхностями, например, при точки выхода луча или выхода звуковой волны) используемого проверке продольных сварных швов расположенных зонда. Это значение требуется для автоматического расчета перпендикулярно центральной оси трубы для того, чтобы USM Go уменьшенного проекционного расстояния. Выполнил соответствующие поправки (уменьшенного) проекционного расстояния и глубины, здесь необходимо ввести значение наружного диаметра испытуемого объекта.

шагом При необходимости выполнить расчет расположения дефекта для Можно соответствии установить значение С в предварительной ровными плоско-параллельными или точной настройки (см. Раздел испытуемых объектов С поверхностями для функции O-DIAME-TER должно быть выставлено Предварительная и точная настройка функций, страница 4-10). значение FLAT.

- Выберите функцию **X VALUE**.

Можно установить значение в соответствии с шагом предварительной - При помощи функциональных клавиш или навигации установите или точной настройки (см. Раздел Предварительная и точная настребуемое значение. ройка функций, страница 4-10).

Доступны следующие настройки:

• 50 . 2000 мм

• FLAT

- Выберите функцию **O-DIAMETER.** 

- При помощи функциональных клавиш или навигации установите требуемое значение.

## НАСТРОЙКА ФОНА ОТРЕЗКА

Для большего удобства прибор позволяет установить различные цвета фона для первых трех отражений.



- При необходимости переключитесь на второй операционный уровень.

- Выберите функциональную группу оценки EVAL.
- Выберите функцию настройки цвета **COLOR LEG.**
- Нажмите функциональную клавишу для включения функции.

## 5.13 Определение угла ввода преобразователя - После калибровки переключитесь на функциональную группу

преобразователя Для определения текущего угла ввода используется функция автоматической корректировки AUTOANG и различных условий, например, от материала или степени износа контактной поверхности зонда.

| BLOCK      |          |
|------------|----------|
|            | K2 30-65 |
| gate a sta | art      |
|            | 14.27 mm |
|            |          |
| A THRESP   | IOLD     |
|            | 23%      |
| PECOPD     |          |
| RECORD     | 055      |
|            | UFF      |
|            |          |

## AUTOANG.

Выберите функцию фиксации значения **BLOCK** и используйте образец-ступенька. Текущий угол ввода преобразователя зависит от функциональную клавишу для выбора пределов калибровочного стандарта, включающих номинальное значение угла падения луча зонда (например К2 30-65 с номинальным значением угла 45°).

- Установите строб на калибровочный эхо-сигнал.

- Переключитесь на функцию регистрации **RECORD** и нажмите функциональную клавишу для записи данных калибровочного эхосигнала.

- Измерьте пик эхо-сигнала. USM Go автоматически регистрирует время прохождения эхо-сигнала с максимальной возникшей в этот период амплитудой.

- Используйте функциональные клавиши для перевода функции регистрации **RECORD** в отключенный режим **OFF**.

#### ВНИМАНИЕ

автоматической Рассчитанное значение угла на некоторое время отобразится у функции Перед использованием необходимо провести нижнего края экрана. настройки угла AUTOANG калибровку (см. Главу Калибровка USM Go. страница 5-

29).

#### AUTOCAL COMPLETE, ANGLE = 45.3, K = 1.01

Значения последнего измерения автоматически вводятся в функциональную группу TRIG, , а именно в функцию определения угла ввода преобразователя PROBE ANGLE.

## ФУНЦИОНАЛЬНАЯ ГРУППА ФИКСАЦИИ ДИАПАЗОНОВ Опция настроек пользователя CUSTOM ИСПЫТАНИЯ

функции **BLOCK** (функциональная группа AUTOANG) позволяет определить стандарт калибровки по своему усмотрению и задать значения функциям Функциональная группа BLOCK позволяет получить данные по диаметра DIAMETER и глубины DEPTH (функциональная группа

выбранным стандартам калибровки установленных диапазонов ВLOCK). испытаний.

#### Пример: К2 65-75

| GAIN 2.0 R/A<br>32.7 dB % | 0    | SA^<br>M | 26. | 68 | AMB<br>X | <br>58^ _ | Ö |
|---------------------------|------|----------|-----|----|----------|-----------|---|
| £ B                       |      |          |     |    |          |           | - |
| DIAMETER                  |      |          |     |    | -        |           |   |
| 5.00 mm                   |      |          |     |    | -        |           |   |
| DEDTU                     |      |          |     |    |          |           |   |
| 7.68 mm                   |      |          |     |    |          |           |   |
|                           |      | ····!    |     |    |          |           |   |
|                           |      |          |     |    |          |           |   |
|                           |      |          |     |    |          |           |   |
|                           |      |          |     |    |          |           |   |
|                           | A .  |          |     |    |          |           | - |
| AUTOCAL AUTOAN            | G BL | DCK      | TF  | lG |          | <br>      |   |



В связи с этим, важно, чтобы функция глубины DEPTH соотносилась с центром бокового цилиндрического отверстия , но не с действительной поверхностью отражения.

Размер бокового цилиндрического отверстия располагается на глубине 7,68 мм и имеет диаметр 5,00 мм.

| 5.14    | Включение      | дополнительных | ОПЦИЙ - Переключитесь на второй операционный уровень                                                                                                                                              |
|---------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Моде   | ернизирование) |                | <ul> <li>В функциональной группе настроек CONFIG1 выберите функцию<br/>введения кода CODE и нажмите клавишу джойстика (USM Go) или<br/>центральную клавишу клавишной панели (USM Go+).</li> </ul> |
| USMG    | ООЯ100154      |                | - Используйте навигацию для выбора первого символа кода.<br>- При помощи навигации перейдите к следующей позиции и выберите<br>следующий символ.                                                  |
| CONFIRM | м              |                | - Нажмите клавишу джойстика (USM Go) или центральную клавишу<br>клавишной панели (USM Go+) для закрытия функции ввода кода.                                                                       |
| ECHO M  | AX             |                | <ul> <li>Переключитесь на функцию записи CONFIRM и нажмите<br/>функциональную клавишу для подтверждения введенного кода.</li> </ul>                                                               |
|         | UT I           |                | Если код введен правильно, опция активируется и будет доступна.                                                                                                                                   |

USM Go обладает рядом опций, например, для различных методов - Переключитесь на функциональную группу настроек **CONFIG2** оценки. Эти опции могут быть активированы путем введения выберите функцию информации **ABOUT**. соответствующих кодов.

R

### Примечание

Для установки опций необходим серийный номер прибора (см. второй операционный уровень функциональной группы настроек **CONFIG1**).

- Нажмите и клавишу джойстика (USM Go) или центральную клавишу клавишной панели (USM Go+) для перехода к стартовому экрану с информацией о доступных опциях.

## 5.15 Настройка USM Go для испытаний.

Помимо основных настроек работы прибора, необходимо провести конфигурацию USM Go для калибровки и испытаний. Функции для этого находятся в на втором операционном уровне функциональных групп EVAL, CONFIG1, и CONFIG2.

Функция отображения времени прохождения сигнала **TOF MODE** находится на первом операционном уровне функциональных групп стробов **GATE A** и **GATE B**.

Кроме того, при необходимости, требуется проверить и откорректировать текущее время и дату таким образом, чтобы эти данные и результаты испытаний сохранялись правильно.

## РЕЖИМ ОТОБРАЖЕНИЯ ВРЕМЕНИ ПРОХОЖДЕНИЯ СИГНАЛА



Измерение пути звука при помощи оценки эхо-сигнала зависят от выбранной точки измерений.

| Доступны следующие настройки:<br>• <b>PEAK</b> (измерение пика)<br>Амплитуда и время прохождения сигнала измеряются при наивысшем<br>значении амплитуды в пределах строба с максимальным<br>разрешением прибора.                                                                                                                                                                                                     | ВНИМАНИЕ<br>Наивысший эхо-сигнал в стробе не должен быть<br>идентичным эхо-сигналу, для которого звуковой путь<br>измеряется. Это может привести к ошибкам измерения.                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • FLANK (измерение по фронту)<br>Амплитуда измеряется аналогично случаю измерения пика PEAK, а<br>время прохождения сигнала измеряется в первой точке пересечения<br>эхо-сигнала и строба с максимальным разрешением прибора.                                                                                                                                                                                        | Две стрелки измерений используются для определения данных и с<br>целью избежания их ошибочной интерпретации.<br>На экране отображаются                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>• J-FLANK (Измерение по J-фронту)<br/>Время прохождения сигнала измеряется аналогично случаю<br/>измерения амплитуды по фронта FLANK, с первого изменения<br/>направления вниз, если порог строба после этого в очередной раз не<br/>достигается.</li> <li>• FIRST PEAK (Первый пик)<br/>Измерение проводится аналогично случаю измерения по J-фронту J-<br/>FLANK, при любом разрешении экрана.</li> </ul> | <ul> <li>положение при котором измеряется звуковой путь (расстояние):<br/>стрелка указывает вниз, и</li> <li>положение, где измеряется амплитуда: стрелка указывает вверх.</li> <li>В дополнение к данным измерений, точка измерений во<br/>времяпролетном режиме (пиковая или фронтальная) при измерении<br/>звукового пути отображается специальным символом в полосе изме-<br/>рений:</li> <li>^ - точка измерения Пиковая</li> <li>/ - точка измерения Фронтальная</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                      | Примеры:<br>SA <sup>^</sup> - звуковой путь в стробе А, точка измерения Пиковая                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

SA/ - звуковой путь в стробе А, точка измерения Фронтальная

#### Пример: ПИКОВАЯ ТОЧКА ИЗМЕРЕНИЯ

Пример: ФРОНТАЛЬНАЯ ТОЧКА ИЗМЕРЕНИЯ

С установкой **РЕАК**, измерение звукового пути и амплитуды производится на пике наивысшего эхо-сигнала в стробе.



измеренный звуковой путь: 12.74 мм амплитуда: 86%



измеренный звуковой путь: 12,35 мм амплитуда: 86%

#### Пример: • J-FLANK (J-фронт)

#### Пример: FIRST PEAK (Первый пик)

С настройкой J-фронта J-FLANK, измерение звукового пути Если строб очередной раз не достигнут после первого ПИКА значения производится в точке пересечения порога строба и переднего края J-FLANK и FIRST PEAK будут иметь схожие результаты для **А%В:** первого эхо-сигнала; измерение амплитуды выполняется на пике 37% первого эхо-сигнала в стробе, даже если в стробе встречаются более высокие сигналы.



измеренный звуковой путь: 12,35 мм амплитуда: 37%



измеренный звуковой путь: 12,35 мм амплитуда: 37%

| GAIN 1.0 PMB<br>21.4 dB % | 83   | SB/<br>MM | 12.  | 26  | 0     |   | 0    |   |        | 2h |
|---------------------------|------|-----------|------|-----|-------|---|------|---|--------|----|
| N                         |      |           |      |     | 1     |   |      |   |        |    |
| gate b start              |      |           |      |     |       |   |      |   | -      |    |
| 12.10 mm                  | ,    | •         |      | *   | 4     | * | •    | * |        |    |
| aate h width              |      | *         |      | +   |       | + |      | + | •      |    |
| 1.45 mm                   |      | +         |      | +   |       | + |      | + |        |    |
|                           |      | +         |      |     |       |   |      |   |        |    |
| B THRESHULD 10%           | 1    | +         |      | +   | 4     | + |      | + | 1      |    |
| 1070                      | 1    | +         |      | +   |       | + |      | + |        |    |
| TOF MODE                  |      | +         |      | +   |       | + |      | • |        |    |
| FIRST PEAK                | M.   | •         | •    |     | , tit | • | . 12 | • |        |    |
| RANGE DUISER              | RECE | TI/ER     | dB.B | 2EE |       |   | - M- |   | GATE R |    |

измеренный звуковой путь: 12,35 мм амплитуда: 83%



#### ВНИМАНИЕ

В любом случае, настройки точки измерения во времяпролетном режиме TOF mode для калибровки и последовательных испытаний должны быть идентичными. Иначе может возникнуть ошибка измерений.

- Переключитесь на первый операционный уровень
- Выберите функциональную группу GATE A или GATE B.
- Выберите функцию отображения времяпролетного измерения **TOF MODE**.
- Нажмите функциональные клавиши для выбора необходимой настройки.

#### Детектор побочных эхо-сигналов

| PULSER      |
|-------------|
| PULSER TYPE |
| SQUARE      |
|             |
| PRF MODE    |
| AUTO LOW    |
| 400 Hz      |
| PHANTOM PRF |
| ON          |
|             |
|             |
|             |
|             |

Если побочные эхо-сигналы не возникают, на их отображение не влияют установки включения (ON) или выключения (OFF) детектора.

Если побочные эхо-сигналы возникают при установке включения (ON), они могут быть распознаны благодаря умеренных движений назад и вперед (приблиз. 3/с). Если наличие побочных эхо-сигналов подтвердилось, изменяйте частоту повторения импульсов пока побочные сигналы не исчезнут или не станут приемлемо малыми.



#### Примечание

Рекомендуется всегда оставлять детектор побочных эхо-сигналов включенным. Это позволяет сразу распознавать проблемы.

- Переключитесь на второй операционный уровень

- Выберите функцию PHANTOM PRF и нажмите функциональную клавишу для включения детектора побочных эхо-сигналов.

Для включения в дефектоскопе USM Go детектора побочных эхосигналов используется функция **PHANTOM PRF**. Когда функции - Выберите функциональную группу **CONFIG2**. включены, побочные эхо-сигналы отображаются в результате умеренных движений в стороны.

Особенно при исследовании кованых объектов рекомендуется оставлять детектор постоянно включенным с целью обнаружения побочных эхо-сигналов.

## Конфигурирование полосы измерений

| RESULT    | S2    |  |
|-----------|-------|--|
| MODE      | SMALL |  |
| READING 5 | A%A   |  |
| READING 6 | A%B   |  |
| LARGE     | SA    |  |

L.

#### Примечание

В качестве альтернативы отображению данных на экране можно настроить виртуальный сигнал светодиода (см. Раздел LARGE (сигнал светодиода), страница 5-64) или название серии данных (см. Раздел Отображение названия серии данных, страница 4-22) в большом поле у правого края.

Можно выбрать следующие типы данных:

- А%А Высота эхо-сигнала строба А в % от высоты экрана
- А%В Высота эхо-сигнала строба В в % от высоты экрана
- А%С Высота эхо-сигнала строба С в % от высоты экрана

При помощи функций **READING 1** - **READING 6** функциональной **SA** группы **EVAL**, можно настроить отдельные элементы полосы измерений, то есть можно выбрать расположение отображения на **SB** экране различных типов данных испытаний.

- Звуковой путь строба А
- Звуковой путь строба В
- **SC** Звуковой путь строба С

| SBA      | Разница между данными единичных измерений звукового                     | PA                 | Проекция расстояния для строба А                          |
|----------|-------------------------------------------------------------------------|--------------------|-----------------------------------------------------------|
| SCB      | Разница межли панными елиничных измерений зрукорого                     | PB                 | Проекция расстояния для строба В                          |
| пути (ст | сазница между данными единичных измерении звукового<br>роб С - строб В) | RA                 | Уменьшенная проекция расстояния для строба А              |
| dBrA     | Высота эхо-сигнала строба А в дБ                                        | RB                 | Уменьшенная проекция расстояния для строба В              |
| dBrB     | Высота эхо-сигнала строба В в дБ                                        | Только             | для измерения РУР                                         |
| dBrC     | Высота эхо-сигнала строба С в дБ                                        | ERS                | Эквивалентный размер отражателя                           |
| LA       | Количество отрезков строба А                                            | Gt                 | Чувствительность испытания РУР                            |
| LB       | Количество отрезков строба В                                            | Gr                 | Опорный коэффициент усиления РУР                          |
| Только   | для расчета положения дефекта                                           | (= усил<br>экрана) | ению прибора для опорного эхо-сигнала при 80% высоты      |
| DA       | Глубина строба А                                                        |                    | Только с дистанционно-амплитудной характеристикой по      |
| DB       | Глубина строба В                                                        | класс де           | ефекта по промышленному стандарту Японии (I, II, III, IV) |

**dBrA** Разница амплитуды наивысшего эхо-сигнала в стробе A **A%rA** ниже или выше исходной кривой ДАК или ВРУ, в дБ отноше

**dBrB** Разница амплитуды наивысшего эхо-сигнала в стробе В **A%rB** ниже или выше исходной кривой ДАК или ВРУ, в дБ отнош

SLA Только с дистанционно-амплитудной характеристикой по A%rC стандарту Китая CNDAC: отнош Разница амплитуды наивысшего эхо-сигнала в стробе А ниже или выше исходной кривой ДАК или ВРУ, в дБ

**SLB** Только с дистанционно-амплитудной характеристикой по стандарту Китая CNDAC:

Разница амплитуды наивысшего эхо-сигнала в стробе В ниже или выше исходной кривой ДАК или ВРУ, в дБ

**SLC** Только с дистанционно-амплитудной характеристикой по стандарту Китая CNDAC:

Разница амплитуды наивысшего эхо-сигнала в стробе С ниже или выше исходной кривой ДАК или ВРУ, в дБ

**А%гА** Амплитуда наивысшего сигнала строба А в процентах в отношении к исходной кривой ДАК или ВРУ (принятой за 100%)

**А%гВ** Амплитуда наивысшего сигнала строба В в процентах в отношении к исходной кривой ДАК или ВРУ (принятой за 100%)

**A%rC** Амплитуда наивысшего сигнала строба С в процентах в отношении к исходной кривой ДАК или ВРУ (принятой за 100%)

- Выберите функциональную группу оценки EVAL.

- Выберите функцию **READING 1** для выбора типа данных для размещения на первой позиции.

- Нажмите функциональные клавиши для выбора необходимого значения.

- Выберите подобным образом типы данных для размещения на других позициях.



#### Примечание

При выборе типа данных краткая информация о нем отображается у верхнего края экрана.

## Увеличение изображения данных



Функции **MODE** и **LARGE** позволяют отображать от одного до четырех типов данных в увеличенном режиме в верхней части А-развертки.

Если отображается только один тип данных в увеличенном режиме, другие 6 полей для данных могут быть расположены в полосе измерений. Если отображаются четыре типа данных в увеличенном режиме, никакие другие данные не выводятся на экран. Увеличение изображения одного типа данных:



Увеличение изображения четырех типов данных:

| GAIN 0.2 RMA 81 | <sup>SA/</sup> 2 | 6. 30 🖁 🖁 | 0. 1 | Sba<br>m | 24. 58 | 2ħ |
|-----------------|------------------|-----------|------|----------|--------|----|
|-----------------|------------------|-----------|------|----------|--------|----|

Данные, относящиеся преимущественно к стробу А, находятся в зеленых рамках; данные, относящиеся к стробу В, - в синих; и данные, относящиеся к стробу С - в красных.

Могут быть выбраны одни и те же данные для отображения в маленьких и в больших полях (см. Раздел Конфигурирование полосы измерений, страница 5-59).



#### Примечание

В качестве альтернативы отображению данных на экране можно настроить виртуальный сигнал светодиода (см. Раздел LARGE (сигнал светодиода), страница 5-64) или название серии данных (см. Раздел Отображение названия серии данных, страница 4-22).

- Переключитесь на второй операционный уровень
- Выберите функциональную группу оценки EVAL.
- Выберите функцию **LARGE** для отображения одного типа данных в увеличенном режиме.
- Нажмите функциональные клавиши для выбора необходимого значения.

- Выберите функцию **MODE** для отображения четырех типов данных в увеличенном режиме.

- Нажмите функциональные клавиши для выбора установок функции **LARGE**. Данные, выбранные в функциях **READING 1** - **READING 4** отображаются в увеличенном режиме.



#### Примечание

Для выбора типов данных см. Раздел Конфигурирование полосы измерений, страница 5-59.

Все поля, которые не могут быть отображены, **НЕАКТИВНЫ.** 

## LARGE (сигнал светодиода)

| RESULT    | S2    |  |
|-----------|-------|--|
| MODE      | SMALL |  |
| READING 5 | A%A   |  |
| READING 6 | A%B   |  |
| LARGE     | SA    |  |

- Переключитесь на второй операционный уровень

- Выберите функциональную группу оценки EVAL.

- Выберите функцию **LARGE** или **READING 4** и нажмите функциональную клавишу для выбора функции **VIRTUAL LED**.

Она включает сигнал предупреждения, который отображается рядом с данными в верней части А-развертки.

| GAIN 0.2 | 2 ANA= | 83 %     | DA/= | 88 | aka= | 63 % |   | $\square$ |
|----------|--------|----------|------|----|------|------|---|-----------|
| 47.4 dE  | 3 SA/= | 42.83 mm | RA/= | 10 | ANB= | 54 % | A | 3h        |



#### Примечание

Сигнал предупреждения можно включить при помощи настроек логики строба (см. Раздел Настройка логики строба, страница 5-74)

Все поля, которые не могут быть отображены, **НЕАКТИВНЫ.** 

Сигнал предупреждения может отображаться в виде виртуального светодиода в крайнем правом поле полосы измерений в верхней части А-развертки. В случае срабатывания, сигнал предупреждения меняет цвет от зеленого к красному.



#### Примечание

Для настройки типа предупреждающего сигнала см. Раздел **Настройка предупреждающего сигнала**, страница 5-77.

## УВЕЛИЧЕНИЕ СТРОБА (распространение строба)

| EVALMODE      |  |
|---------------|--|
| EVAL MODE     |  |
| dB REF        |  |
| COLOR LEG     |  |
| OFF           |  |
| MACHIEV CATE  |  |
| PIAGNIFT GATE |  |
| GATE A        |  |
| AGT           |  |
| OFF           |  |

- Переключитесь на второй операционный уровень
- Выберите функциональную группу оценки EVAL.
- Выберите функцию **MAGNIFY GATE** для указания увеличиваемого строба.
- Нажмите функциональные клавиши для выбора необходимого строба.

Установка функции **MAGNIFY GATE** позволяет распространить строб на весь отображенный диапазон. Можно выбрать строб для увеличения.



#### Примечание

Для использования возможности увеличения строба, функция **MAGNIFY GATE** должна быть привязана к одной из функциональной клавиш (см. Раздел **Активация функции увеличения строба**, страница 5-66).

| Активация функции увеличения строба                                                                                           | ГОР Примечание<br>Для использования функции увеличения необходимо<br>указать строб (см. Раздел УВЕЛИЧЕНИЕ СТРОБА                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SETUP<br>FUNCTION 1                                                                                                           | (распространение строба), страница 5-65).                                                                                                                                          |
| MAGNIFY GATE<br>NONE                                                                                                          |                                                                                                                                                                                    |
| FUNCTION 2                                                                                                                    | - Переключитесь на второй операционный уровень                                                                                                                                     |
| FREEZE<br>COPY<br>ABOUT                                                                                                       | - Выберите функциональную группу CONFIG2.                                                                                                                                          |
| ASCAN FILL<br>OFF                                                                                                             | - В качестве примера, выберите функцию <b>FUNCTION 1</b> для использования верхней функциональной клавиши увеличения строба.                                                       |
| Для того, чтобы использование функции увеличения строба для<br>распространения на весь отображенный диапазон стало возможным, | <ul> <li>Активируйте функцию (см. Раздел Активация функций, страница<br/>4-12). При выбранной верхней опции вы можете определить функцию<br/>короткого нажатия клавиши.</li> </ul> |
| необходимо соответствующим образом настроить одну из функциональных клавиш.                                                   | - Используйте навигацию, чтобы выбрать функцию <b>FUNCTION 1</b> для короткого нажатия клавиши.                                                                                    |
| Помимо этого, строб должен быть достаточно широким, в противном случае появится сообщение об ошибке.                          | - В конце отключите функцию FUNCTION 1.                                                                                                                                            |
|                                                                                                                               | - Переключитесь на первый операционный уровень и используйте короткое нажатие верхней функциональной клавиши. Строб распространен на весь отображаемый диапазон.                   |

Выпуск 6 (02/2013)

## Нормальная А-развертка:



А-развертка со включенной функцией увеличения для строба В:



## Автоматическое фиксирование А-развертки (Фиксирование)

| FREEZE MODE<br>STANDARD<br>ENVELOPE |
|-------------------------------------|
| STANDARD<br>ENVELOPE                |
| ENVELOPE                            |
| ENVELOPE                            |
|                                     |
| OFF                                 |
|                                     |
| ENVELOPE COLOR                      |
| BLUE                                |
|                                     |
| POWER SAVER                         |
| OFF                                 |
|                                     |

### • A-FREEZE (Фиксация для строба А)

А-развертка фиксируется автоматически, когда сигнал достигает строба А. Данная настройка подходит, например, для проведения измерений на объектах с высокой температурой, для измерений в сложных условиях контакта с поверхностью или для измерений на участках точечной сварки.

#### • B-FREEZE \* (Фиксация для строба В)

А-развертка фиксируется автоматически, когда сигнал достигает строба В. Данная настройка подходит, например, для проведения измерений на объектах с высокой температурой, для измерений в сложных условиях контакта с поверхностью или для измерений на участках точечной сварки.

### • AB-FREEZE \* (Фиксация для стробов А и В)

А-развертка фиксируется автоматически, когда сигнал достигает либо строба А. либо строба В.

В функциональной группе CONFIG3, USM Go с функцией FREEZE • COMPARE МОДЕ представлен набор различных опций для автоматической Зафиксированная ручным способом А-развертка отображается для сравнения в фоне, пока активная А-развертка отображается на перефиксации А-развертки. днем плане. После выхода из функционального раздела FREEZE, последние данные А-развертки записываются и отображаются для

Доступны следующие настройки:

### STANDARD

Путем закрепления за одной из функциональных клавиш функции • Если функции В START MODE задано значение А для строба В, функция FREEZE будет недействительна до тех пор, пока эхо-сигнал **FREEZE** можно зафиксировать А-развертку ручным способом (см. не достигнет строба А. главу 5.3 Назначение функциональных клавиш, страница 5-8).

сравнения.
| - Переключитесь на второй операционный уровень                | - Используйте навигацию, чтобы выбрать функцию FREEZE для      |
|---------------------------------------------------------------|----------------------------------------------------------------|
|                                                               | короткого нажатия клавиши.                                     |
| - Выберите функциональную группу CONFIG3.                     |                                                                |
|                                                               | - В конце отключите функцию <b>FUNCTION 1.</b>                 |
| - Выберите функцию FREEZE MODE и нажмите функциональные       |                                                                |
| клавиши для выбора необходимой установки.                     | - Переключитесь на первый операционный уровень и используйте   |
|                                                               | короткое нажатие верхней функциональной клавиши. А-развертка   |
| Фиксация А-развертки ручным способом                          | зафиксирована.                                                 |
|                                                               |                                                                |
| для фиксации А-развертки ручным способом необходимо настроить | - используите короткое нажатие функциональной клавиши еще раз. |
| одну из функциональных клавиш.                                | На экране отобразится текущая А-развертка.                     |

- Переключитесь на второй операционный уровень
- Выберите функциональную группу **CONFIG2.**

- В качестве примера, выберите функцию **FUNCTION 1** для использования верхней функциональной клавиши с целью настройки функциональной клавиши фиксации А-развертки.

- Активируйте функцию (см. Раздел **Активация функций,** страница 4-12). При выбранной верхней опции вы можете определить функцию короткого нажатия клавиши.

## 5.16 Настройка экрана

Основные настройки экрана по умолчанию см. в Главе 4.6 Настройки дисплея по умолчанию:

- Схема (см. страницу 4-16)
- Цвет А-развертки (см. страницу 4-17)
- Сетка (см. страницу 4-18)
- Яркость (см. страницу 4-18)

Дополнительные настройки отображаемых на экране объектов, приводятся ниже.

## Функция заполнения цветом областей эхо-сигналов на - Переключитесь на второй операционный уровень. А-развертке ASCAN FILL

| SETUP                |
|----------------------|
| FUNCTION 1           |
| Magnify gate<br>None |
| FUNCTION 2           |
| FREEZE<br>COPY       |
| ABOUT                |
| SHOW                 |
| ASCAN FILL           |
| OFF                  |
|                      |

Функция **ASCAN FILL** позволяет переключиться в режим заполнения цветом областей эхо-сигналов. Благодаря высокой контрастности в режиме заполнения цветом, значительно улучшается распознаваемость сигналов, в особенности во время ускоренного сканирования испытуемых объектов.

- Выберите функциональную группу настроек CONFIG2.

- Выберите функцию заполнения цветом **ASCAN FILL** и нажмите функциональную клавишу, чтобы перейти в режим заполнения цветом областей эхо-сигналов в А-развертке.

Изображение с заполнением областей эхо-сигналов цветом:

| GAIN 2.0   | BAR=    | - 84    | %    | DA/=    |          | RR.         | AKA= | - 84  | 8        | 8/   | 57.90           | 61         |
|------------|---------|---------|------|---------|----------|-------------|------|-------|----------|------|-----------------|------------|
| 51.6 dB    | SA/= /  | \$1, 99 | m    | SA/=    | 41.99    | <b>I</b> II | SA/= | 41.99 | 100 0    | 11   | J/. OU          | ī          |
| $\sim$     |         |         |      |         |          |             |      | •     |          |      |                 |            |
|            |         | ł       | ,    | +       |          | ٠           | -    | *     | ,        | +    |                 |            |
| range      |         | E .     |      |         |          | 1           | -    |       |          |      | -               |            |
| 100        | .00 mm  | Ł       |      | *       |          | •           | ÷    | *     |          | *    | · :             |            |
|            |         | ŧ.      |      |         |          |             |      | +     |          | +    | . :             |            |
| PROBE DEL  | AN .    | ŧ.      |      |         |          |             |      |       |          |      |                 |            |
| 00000000   | 000     | E .     | ,    | *       |          |             | -    | .*    |          | +    |                 |            |
|            | .000 µs | E       |      |         |          |             |      |       |          |      |                 |            |
|            |         | ŧ.      |      |         |          |             | -    | 1     |          |      |                 |            |
| VELOCITY   |         | E       | ,    | +       |          |             | -    | •     | 1        | +    |                 |            |
| 58         | 300 m/s | ŧ       | ,    |         |          |             | -    | L     |          |      |                 |            |
| STEEL      | STNLSS  |         |      |         |          |             |      | Г.    |          |      |                 |            |
| DISPLAY DE | I AY    | 1       | ·    | +       |          |             | 1    | •     | 11       | +    | 1.1             | <u>،</u> ا |
| 0.010100   | 0000.00 |         |      |         |          |             |      |       | 4        |      |                 |            |
|            | ισοο μs |         |      |         |          |             |      | ľ     | <u> </u> |      | . A.            |            |
|            |         | Mar In  |      | մունքու | un Phalo | ult         |      | Net A | - N      | 1.16 | VIII CONTRACTOR | - 14       |
| RANGE      | PULSER  | F       | RECE | IVER    | dB R     | EF          | AUTO | CAL   | GA       | TE A | GATE B          |            |

## Работа с включенной функцией отбора наивысшего эхо-сигнала Echo Max

| CODE          |  |
|---------------|--|
| SERIAL NUMBER |  |
| USMG009100154 |  |
| CODE          |  |
| 000000        |  |
| CONFIRM       |  |
| ECHO MAY      |  |
| OFF           |  |

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу CONFIG1.
- Выберите функцию ЕСНО МАХ и для ее включения нажмите функциональную клавишу.

### Пример

При частоте повторения импульса 1200 Гц и включенной функции **ЕСНО МАХ** 1200/60 = проводится анализ 20 А-разверток из исходных данных.

Наибольшая амплитуда каждой из 800 точек отображается в виде совмещенной А-развертки.



#### Примечание

При частоте повторения импульса = 60 Гц и ниже выбор максимального эхо-сигнала не выполняется.

Как правило, количество А-разверток, генерируемых дефектоскопом USM Go в секунду (= ЧПИ), превышает количество разверток, которое может быть выведено на экран прибора (= 60 А-разверток в секунду). Поэтому отображаемые на экране А-развертки выбираются случайным образом из массива исходных данных.

Функция Echo Max при частоте повторения импульсов > 60 Гц позволяет дефектоскопу USM Go проводить анализ исходных данных и показывать максимальные амплитуды каждой из 800 точек.

## 5.17 Общие настройки

Пользователь может выбрать метод оценки измеренных эхо-сигналов Основные настройки и соответствующие функции прибора описаны в отражателя. Главе 4.5 Важные настройки по умолчанию:

- Язык (см. страницу 4-13)
- Единицы измерения (см. страницу 4-14)
- Формат данных, даты, времени (см. страницу 4-15)
- Ориентация прибора (см. страницу 4-16)

Дополнительные настройки дефектоскопа USM Go см. ниже.

## РЕЖИМ ОЦЕНКИ (EVAL)

- В зависимости от включенных опций, можно выбрать следующие способы оценки:
- Оценка уровня опорного сигнала в дБ **dB REF** (по умолчанию, см. страницу 5-38)
- Дистанционно-амплитудная коррекция/Временная ٠ регулировка усиления **DAC/TCG** (см. страницу 5-91)
- АРД DGS (см. страницу 5-119)
- Оценка в соответствии со спецификацией AWS D1.1 Американского общества сварщиков (см. страницу 5-41)
- дистанционно-амплитудной Оценка характеристики ПО промышленному стандарту Японии **JISDAC** (см. страницу 5-102)
- дистанционно-амплитудной Оценка характеристики ПО промышленному стандарту Китая CNDAC (см. страницу 5-109)
- Переключитесь на второй операционный уровень.
- Выберите функциональную группу оценки EVAL.
- Выберите функцию **EVAL MODE**, нажмите функциональную клавишу, чтобы выбрать метод оценки.

## Настройка логики строба

| GATEMODE      |
|---------------|
| gate a logic  |
| NEGATIVE      |
|               |
| GATE B LOGIC  |
| POSITIVE      |
|               |
| B START MODE  |
| IP            |
|               |
| OUTPUT SELECT |
| A ()          |
| A (-)         |
|               |

Можно выбрать между функциями стробов **GATE A LOGIC** и **GATE B LOGIC** для установки критериев срабатывания сигнала строба.

Доступны следующие настройки:

### • OFF (ВЫКЛ)

Строб отключен, сигнальная и измерительная функции отключены, строб не отображается на экране.

### • POSITIVE (ПОЛОЖИТЕЛЬНЫЕ ЗНАЧЕНИЯ)

Сигнализация срабатывает при превышении значений строба.

#### • NEGATIVE (ОТРИЦАТЕЛЬНЫЕ ЗНАЧЕНИЯ)

Сигнализация срабатывает в случае, если значение строба не достигнуто.

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу настроек CONFIG2.

- Выберите функцию настройки логики строба A **GATE A LOGIC** и нажмите функциональную клавишу для подтверждения выбора.



#### Примечание

Порядок настройки предупреждающего сигнала Разделе Настройка предупреждающего сигнала, страница 5-77.

- Выберите функцию настройки логики строба В **GATE B LOGIC** и см. аналогичным образом подтвердите необходимые настройки.

## Выбор типа генератора импульсов

| PULSER      |  |
|-------------|--|
| PULSER TYPE |  |
| SQUARE      |  |
|             |  |
| PRF MODE    |  |
| AUTO LOW    |  |
| 400 Hz      |  |
| PHANTOM PRF |  |
| ON          |  |
|             |  |
|             |  |
|             |  |
|             |  |

На дефектоскопе USM Go предусмотрен генератор импульсов прямоугольного сигнала. При наличии такого генератора пользователь может выбирать между пилообразным и прямоугольным импульсами.

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу настроек **CONFIG2.** 

- Выберите функцию определения типа генератора импульсов **PULSER TYPE** и нажмите функциональную клавишу для подтверждения выбора.



#### Примечание

Если выбран генератор прямоугольных импульсов, установленная по умолчанию функция энергии сигнала ENERGY на первом операционном уровне заменяется функцией ширины WIDTH (см. главу 5.5 Настройки генератора импульсов (функциональная группа PULSER), страница 5-14).

## Блокировка джойстика

| STARTUP           |  |
|-------------------|--|
| DATE              |  |
| 09.01.2013        |  |
| TIME              |  |
| 11:34             |  |
| ORIENTATION       |  |
| RIGHT HANDED      |  |
| Joy Control<br>On |  |

Пользователь может заблокировать джойстик в целях предотвращения случайного изменения настроек.

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу настроек CONFIG1.

- Выберите функцию настроек джойстика **JOY CONTROL** и нажмите функциональную клавишу, для блокировки (переключить в положение **OFF/BыКЛ).** 

#### Примечание



В заблокированном состоянии джойстика нажатие на него по-прежнему позволяет переключаться между функциями (например, между операционными уровнями). Устройство не реагирует только на перемещение джойстика.

## Настройка предупреждающего сигнала



Настройки виртуального светодиода **VIRTUAL LED** и **OUTPUT SELECT** логически зависят от работы стробов A и B, при этом можно независимо определить полярность строба:

• для VIRTUAL LED (виртуальный светодиод) с помощью функций настроек стробов А и В GATE A LOGIC и GATE B LOGIC;

• для OUTPUT SELECT A (выбор условия срабатывания строба A) и OUTPUT SELECT B (выбор условия срабатывания строба B) с помощью (+) и (-).

Дополнительный строб С не учитывается.

Пользователь может настроить предупреждающий сигнал пользовательского интерфейса (см. главу 8.1 **Интерфейсы подключения**, страница 8-2). Пользователь может определить критерии срабатывания сигнализации строба.

Доступны следующие настройки:

#### • A (+)

Сигнализация срабатывает при превышении значения строба А.

## • B (+)

Сигнализация срабатывает при превышении значения строба В.

#### • A / B (+)

Сигнализация срабатывает при превышении значения строба А либо В.

### • A (-)

Сигнализация срабатывает в случае, если значение строба А не достигнуто.

## • B (-)

Сигнализация срабатывает в том случае, если значение строба В не достигнуто.

## • A / B (-)

Сигнализация срабатывает в том случае, если значение строба А либо В не достигнуто.

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу настроек **CONFIG2.**
- Выберите функцию **OUTPUT SELECT.**
- Нажмите функциональную клавишу, чтобы выбрать нужные настройки.

## Энергосберегающий режим

| FREEZE<br>FREEZE MODE<br>STANDARD |
|-----------------------------------|
| ENVELOPE                          |
| Envelope Color<br>Blue            |
| Power Saver<br>Off                |

Пользователь может выбрать функцию **POWER SAVER** (энергосберегающий режим) для увеличения времени работы аккумулятора путем настройки времени, после которого экран прибора автоматически отключается (при условии, что в течение этого времени прибор не использовался).

Экран автоматически включается при использовании любого элемента управления.

Время отключения может быть задано в диапазоне от 1 до 30 минут.

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу настроек **CONFIG3**.

- Выберите функцию энергосберегающего режима **POWER SAVER**, нажмите функциональную клавишу для настройки функции.

TOF in LAYER TOF in LAYER

AYER TYPE

LAYER EDIT

OFF

EDIT

STANDARD

## Функция TOF in LAYER (время прохождения сигнала в Определение уровней слое)

Пользователь может задать либо толщину одного уровня, либо толщину 10 уровней в диапазоне 1,00 - 10,0 мм каждый.

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу настроек **CONFIG3**.

- Выберите функцию **TOF in LAYER** и для ее включения нажмите функциональную клавишу.

- Переключитесь на функцию LAYER TYPE (определение типа уровня) и нажмите функциональную клавишу, чтобы выбрать режим для одного уровня СТАНДАРТНЫЙ (STANDARD) или для 10 уровней ПОЛЬЗОВАТЕЛЬСКИЙ (CUSTOM).

Вместо точного значения (например, времени прохождения или - Переключитесь на функцию редактирования уровня LAYER EDIT и расстояния) дефектоскоп USM Go может показывать только слой, в нажмите на джойстик (USM Go) или на центральную клавишу котором находится отражатель.

Пользователь может указать уровни на разной глубине (но с идент- соответствующей толщиной.

ичной скоростью распространения звука в среде). Последовательная

нумерация уровней выполняется автоматически. При включении - Укажите значения, используя навигацию или функциональные функции **TOF in LAYER** на экране отображается только номер слоя, <sup>клавиши</sup>.

в котором обнаружен дефект (например, включение или расслоение).

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+), чтобы закрыть меню настроек.

После этого толщина слоя считается заданной.

Если включена функция **TOF in LAYER**, вместо числового значения для разверток A, B и C на экране отображается только номер слоя - в строке измерений в верхней части A-развертки, например, **7 LA** (= слой 7).

BEA

OFF

9.5dB

BEA

BW GAIN

| Ослабление отраженного сигнала задней стенки (ВЕА) | в  | А-развертке.   | После    | этого    | отраженный    | донный | сигнал | можно |
|----------------------------------------------------|----|----------------|----------|----------|---------------|--------|--------|-------|
|                                                    | ВЬ | ыборочно испол | тьзовать | ь при оі | ценке дефекта | a.     |        |       |

При этом ослабление донного сигнала позволяет систематически повышать коэффициент усиления. Пользователь может, например, повысить коэффициент усиления только в пределах диапазона дефекта, чтобы получить пиковое значение эхо-сигнала в этом диапазоне.

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу настроек **CONFIG3**.
- Выберите функцию **BEA** и нажмите функциональную клавишу, чтобы включить ослабление отраженного сигнала задней стенки.

Функцию **BEA** (ослабление донного сигнала) можно использовать - Переключитесь на функцию усиления донного сигнала **BW GAIN.** для настройки отдельного значения усиления диапазона строба В.

Это значение не зависит от значения усиления остального тестового - Используйте функциональные клавиши для выбора нужного диапазона. значения коэффициента усиления.

Ослабление отраженного сигнала делает возможным выборочное затухание или максимальное усиление эхо-сигналов строба В.

Чаще всего эта функция используется при проверке поковок. В этом случае коэффициент усиления строба В снижается до тех пор, пока отраженный сигнал не будет полностью отображен

## Отображение огибающей кривой (ENVELOPE)

| FREEZE         |
|----------------|
| FREEZE MODE    |
| STANDARD       |
|                |
| ENVELOPE       |
| OFF            |
|                |
| ENVELOPE COLOR |
| BLUE           |
|                |
| POWER SAVER    |
| OFF            |
|                |

Помимо текущей А-развертки, на экране фоном отображается ранее созданная А-развертка, представляющая собой огибающую кривую. Фоновая А-развертка обновляется при каждом превышении максимальной амплитуды.

Пользователь может выбрать цвет огибающей кривой.

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу настроек **CONFIG3**.

- Выберите функцию **ENVELOPE** и нажмите функциональную клавишу, чтобы включить отображение огибающей кривой.

- Переключитесь на функцию выбора цвета огибающей кривой **ENVELOPE COLOR**.

- С помощью функциональных клавиш выберите необходимые настройки.

А-развертка с огибающей кривой:



Автоматическое коэффициентом Автоматическое управление коэффициентом усиления управление **VСИЛЕНИЯ** дефектоскопа USM Go в полностью автоматическом режиме удерживает отображаемую амплитуду эхо-сигнала на заданной Auto Gain Ctrl высоте и тем самым компенсирует отклонения амплитуды CTRL MODE полученного сигнала. Такой подход повышает точность измерений OFF толщины стенки и упрощает процесс измерения. MAX AMP.% Для настройки автоматического управления коэффициентом 60 усиления вводится минимальное и максимальное значения высоты амплитуды (для эхо-сигнала строба) в процентах от высоты экрана. MIN AMP.% 50 Кроме того, пользователь может задать пороговое значение шума. Сигналы ниже этого порогового значения во время автоматического NOISE LEVEL.% управления коэффициентом усиления не учитываются. 20

Пользователь может воспользоваться функциями Auto Gain Ctrl для включения и настройки автоматического управления коэффициента управления дефектоскопа USM Go.

Даже незначительные отклонения амплитуды эхо-сигналов могут привести к ошибкам при измерении толщины стенки. В этом случае контроль амплитуды приобретает большое значение. Автоматическое управление коэффициентом усиления дефектоскопа USM Go позволяет решить эту задачу.



#### Примечание

Чем меньше соотношение значений **MIN AMP.% (мин.** амплитуда) и **MAX AMP.% (макс. амплитуда)**, тем выше чувствительность управления.

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу настроек CONFIG4.

- Выберите функцию **CTRL MODE** и нажмите функциональную клавишу, чтобы включить автоматическое управления коэффициентом усиления.

- Переключитесь на функцию **MAX AMP.%** и с помощью функциональных клавиш установите нужное значение.

- Переключитесь на функцию **MIN AMP.%** и с помощью функциональных клавиш установите нужное значение.

- Переключитесь на функцию определения уровня шума **NOISE LEVEL.%** и с помощью функциональных клавиш установите нужное значение.

#### Примечание

Автоматическое управление коэффициентом усиления позволяет, например, при калибровке с использованием функции автоматической калибровки **AUTOCAL** (настройка **MAX AMP.%** = 81, **MIN AMP.%** = 79) поддерживать контрольную амплитуду в размере 80% от экрана высоты с точностью ±1 %.

| GAIN 1.<br>29.0 d | .0 sa^<br>IBinn   | 20. | 01         | SB^<br>MA | 40.  | 01 | SBA<br>MA | 20. ( | DO |     | A        |   | Ô |
|-------------------|-------------------|-----|------------|-----------|------|----|-----------|-------|----|-----|----------|---|---|
| 1/2               |                   | 1   |            |           |      |    |           | •     |    | •   |          | • |   |
| gate a sta        | art<br>2.50 mr    | n   |            | ·         |      | ·  |           |       |    | •   |          |   |   |
| 61                |                   |     |            | +         |      | +  |           | ٠     |    | ٠   |          | - |   |
| s-rer⊥            | 20.00 mr          | n   | •          | •         |      | •  |           | •     | •  | •   |          |   |   |
| s-ref2            | 40 <b>.0</b> 0 mr | n   |            |           |      |    |           | •     |    | •   |          |   |   |
| RECORD            | S-REF2            | ?   | Ju<br>Linu |           | 10., | •  | 1         |       |    | 130 | . 1 . 49 |   |   |
| AUTOCAL           | AUTOAN            | NG  | BLC        | DCK       | TF   | lG |           |       |    |     |          |   | - |

## Напоминание о калибровке

| SETUP 2<br>CAL REMINDER<br>OFF | YEARLY CAL<br>DATE |
|--------------------------------|--------------------|
| CAL RESET                      | CAL REMINDER       |
| USER GAIN STEP                 | OFF<br>CAL RESET   |
| 10.0dB                         |                    |
| O.6                            |                    |

Пользователь может включить краткосрочное напоминание о калибровке с временным диапазоном от 0,5 до 4 часов, а также напоминание о ежегодной калибровке.

При включении напоминания о ежегодной калибровке указывается предполагаемая дата калибровки. Пользователь также может указать, за какой период времени до наступления этой даты на экране должен появиться значок напоминания.

## Напоминание о краткосрочной калибровке

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу настроек CONFIG2.

- Выберите функцию настройки напоминания о калибровке САL

Некоторые тестовые технические условия требуют повторной **REMINDER**, воспользуйтесь функциональными клавишами для калибровки всей системы (приборов, кабелей, преобразователя, установки временного периода. материалов) через постоянные промежутки времени.

- Переключитесь на функцию CAL RESET, нажмите функциональную

При включении функции напоминания на дефектоскопе USM Go клавишу для включения напоминания и сброса начального момента каждый раз при приближении времени калибровки на экране рядом с временного периода на ноль. А-разверткой появляется соответствующий значок (см. Раздел

Иконки индикатора состояния, страница 0-7, в начале данного руководства по эксплуатации).

## Напоминание о ежегодной калибровке

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу настроек CONFIG3.
- Переключитесь на функцию DATE (дата) и нажмите на джойстик (-USM Go) или на центральную клавишу клавишной панели (USM Go+).
- Воспользуйтесь навигацией для выбора даты ежегодной калибровки.

- Переключитесь на функцию CAL REMINDER, воспользуйтесь функциональными клавишами для выбора времени включения У дефектоскопа USM Go может быть два пользователя:
- Переключитесь на функцию CAL RESET (сброс калибровки) и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) для установки напоминания.
- Для подтверждения одновременно нажмите две функциональные клавиши. Напоминание станет действующим только после даты проведения следующей калибровки.

## Защита паролем



Контролер (Inspector)

• Специалист (Expert)

Пользователь, зарегистрировавшийся в качестве Специалиста, может ограничить Контролеру доступ к некоторым функциям. Это позволяет работать с прибором, не допуская случайных изменений настроек. У Специалиста всегда сохраняется доступ ко всем функциям.

<sup>-</sup> Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+), чтобы закрыть меню ввода даты.

| Для актива                                                                                                                                                                          | ции этой функции необходимо ввести пароль. Если                                                                                                                                                                                      | - С помощью клавиш навигации введите первый символ пароля.                                                                         |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| пароль задан, переключиться в пользовательскии режим специалиста возможно только после ввода пароля.                                                                                |                                                                                                                                                                                                                                      | <ul> <li>и - Аналогичным образом введите остальную часть пароля.</li> <li>Максимальное количество символов - 12.</li> </ul>        |  |  |  |  |
| Сохранен                                                                                                                                                                            | ие нового пароля                                                                                                                                                                                                                     | - Нажмите на джойстик (USM Go) на центральную клавишу клавишной панели (USM Go+), чтобы завершить ввод пароля.                     |  |  |  |  |
|                                                                                                                                                                                     | <b>ВНИМАНИЕ</b><br>Если пароль задан, доступ ко всем функциям прибора<br>возможен только после ввода пароля. Если пароль<br>утрачен, необходимо выполнить полный сброс настроек<br>прибора (см. Раздел <b>Заводская установка по</b> | - Повторно введите пароль и нажмите на джойстик (USM Go) на центральную клавишу клавишной панели (USM Go+). Новый пароль сохранен. |  |  |  |  |
|                                                                                                                                                                                     | <b>умолчанию (Сброс)</b> , страница 3-12).                                                                                                                                                                                           | Изменение пароля                                                                                                                   |  |  |  |  |
| Сохранить пароль возможно при условии, что защита паролем еще<br>не включена (ранее не был задан другой пароль), или же если<br>пользователь вошел под учетной записью специалиста. |                                                                                                                                                                                                                                      | Пользователь может в любое время изменить пароль. Для этого<br>нужно ввести уже имеющийся пароль.                                  |  |  |  |  |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                      | - Переключитесь на второй операционный уровень.                                                                                    |  |  |  |  |
| - Переключи                                                                                                                                                                         | тесь на второй операционный уровень.                                                                                                                                                                                                 | - Выберите функциональную группу настроек CONFIG4.                                                                                 |  |  |  |  |
| - Выберите с                                                                                                                                                                        | рункциональную группу настроек CONFIG4.                                                                                                                                                                                              | - Переключитесь на функцию пароля <b>PASSWORD</b> и нажмите на                                                                     |  |  |  |  |
| - Переключ<br>движением<br>центральнук                                                                                                                                              | итесь на функцию пароля <b>PASSWORD</b> и быстрым<br>прижмите джойстик (USM Go) или коротко нажмите<br>о клавишу клавишной панели (USM Go+).                                                                                         | джойстик (USM Go) на центральную клавишу клавишной панели<br>(USM Go+).                                                            |  |  |  |  |

перечня функций. Настройки сохранены.

| <ul> <li>С помощью клавиш навигации введите действующий пароль.</li> </ul>                                                                                                                 | Настройки защиты доступа                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Нажмите на джойстик (USM Go) на центральную клавишу клавишной панели (USM Go+), чтобы завершить ввод пароля.</li> <li>С помощью клавиш навигации введите новый пароль.</li> </ul> | После сохранение пароля пользователь может установить защиту отдельных функций дефектоскопа USM Go. В результате доступ к данным функциям будет открыт только специалисту после ввода пароля.               |
| - Нажмите на джойстик (USM Go) на центральную клавишу клавишной панели (USM Go+), чтобы завершить ввод нового пароля.                                                                      | - Переключитесь на второй операционный уровень.                                                                                                                                                             |
| - Повторно введите пароль и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). Новый пароль сохранен.                                                     | <ul> <li>- Выберите функциональную группу настроек CONFIG4.</li> <li>- Переключитесь на функцию PARAM EDIT и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).</li> </ul> |
| Если в качестве пароля введен пустой символ, защита<br>паролем отменяется и все функции становятся<br>доступными любому пользователю.                                                      | - введите пароль при помощи клавиш навигации и нажмите джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+), чтобы завершить ввод пароля. На экране появится перечень функций.           |
|                                                                                                                                                                                            | - При помощи клавиш навигации просмотрите перечень функций и переведите функции, на которые вы хотите установить защиту, в состояние <b>OFF.</b>                                                            |
|                                                                                                                                                                                            | - Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+), чтобы завершить редактирование                                                                                        |



| - Переключитесь на функцию <b>PARAM MODE</b> и быстрым движением прижмите джойстик (USM Go) или коротко нажмите центральную                                                                                                           | Регистрация под учетной записью специалиста                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| клавишу клавишной панели (USM Go+).                                                                                                                                                                                                   | - Переключитесь на второй операционный уровень.                                                                                                                                                                                                                                                                                                                                |
| - При помощи клавиш навигации измените статус пользователя с <b>EXPERT</b> на <b>INSPECTOR</b> , чтобы активировать защиту паролем.                                                                                                   | - Выберите функциональную группу настроек CONFIG4.                                                                                                                                                                                                                                                                                                                             |
| - Переключитесь на первый операционный уровень.                                                                                                                                                                                       | - Переключитесь на функцию <b>PARAM MODE</b> и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).                                                                                                                                                                                                                                             |
| - Попытайтесь использовать любую защищенную функцию.                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |
| У пользователя со статусом INSPECTOR (проверяющий) не должно<br>быть возможности пользоваться защищенными функциями. В этом<br>случае появится сообщение<br>NOT AVAILABLE FOR OPERATOR (НЕДОСТУПНО<br>ПОЛЬЗОВАТЕЛЮ).<br>внизу экрана. | <ul> <li>С помощью клавиш навигации измените статус пользователя с INSPECTOR на EXPERT. На экране появится окно для ввода пароля.</li> <li>Введите пароль при помощи клавиш навигации и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+), чтобы завершить ввод пароля. Если введен правильный пароль, отображается статус EXPERT.</li> </ul> |
| Для того, чтобы воспользоваться защищенными функциями,<br>необходимо войти под учетной записью специалиста.                                                                                                                           | - Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+), чтобы выйти из меню настройки.                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                       | Теперь пользователь зашел под учетной записью специалиста и имеет доступ ко всем функциям прибора.                                                                                                                                                                                                                                                                             |

# 5.18 Дистанционно-амплитудная коррекция (DAC)

У дефектоскопа USM Go имеется дополнительная функция ДАК (DAC) для оценки эхо-сигналов.

Из-за угла расхождения пучка и затухания звука в материале высота амплитуды эхо-сигналов от отражателей соответствующего размера зависит от расстояния до преобразователя.

Кривая дистанционно-амплитудной коррекции, записанная при помощи заданных контрольных отражателей, в графической форме отображает эти факторы воздействия.

Если для записи кривой ДАК использовался образец с искусственными дефектами, эту амплитуду эхо-сигналов разрешается использовать для оценки любого дефекта без дальнейшей корректировки. Образец должен быть изготовлен из того же материала, что и испытуемый объект.

Временная регулировка усиления (TCG) увеличивает коэффициент (ДАК/ВРУ). усиления в режиме точного контроля расстояния, поэтому все опорные эхо-сигналы достигают 80% от высоты экрана. Амплитуда эхо-сигналов оценивается путем сравнения с первым опорным эхосигналом.



- Переключитесь на второй операционный уровень.

- Выберите функциональную группу оценки **EVAL**.

- Выберите функцию режима оценки **EVAL MODE**, нажмите функциональную клавишу, чтобы выбрать метод оценки **DAC/TCG** (ДАК/ВРУ).

- Переключитесь на первый операционный уровень. Теперь на экране отображается функциональная группа **DAC/TCG**.

Становится доступной ранее сохраненная кривая ДАК.

## Запись кривой ДАК

- Выберите функциональную группу DAC/TCG.



**ВНИМАНИЕ** - Для того, чтобы вывести на экран отдельные функциональные Перед записью кривой ДАК проведите калибровку группы и функции DAC/TCG, с помощью клавиш навигации прибора (см. главу 5.8 **Калибровка USM Go,** страница поднимитесь **вверх** по экрану. 5-29).

После записи новой кривой удалите предыдущую кривую (если имеется). Если необходимо, перед началом записи новой кривой сохраните предыдущую кривую в базе данных.



#### Примечание

Пользователь может настроить полосу измерений для отображения определенных значений (см. Раздел Конфигурирование полосы измерений, страница 5-59).





- Выберите функцию gate a start и установите строб А на первый эхо- - Установите строб А на второй эхо-сигнал ДАК. сигнал ДАК.

- Выберите функцию **AUTO80** и нажмите на функциональную клавишу, чтобы автоматически выставить эхо-сигнал на 80% от высоты экрана.

- Выберите функцию **RECORD** и нажмите на функциональную клавишу, чтобы сохранить вторую точку кривой ДАК. Появившаяся надпись (2 POINTS) подтверждает сохранение 2-х точек. После этого функция gate a start снова выбирается автоматически.



кдает сохранение. RECORD GATE A SETUP EDIT AWS D1.1 OFFSETS OFF

- Аналогичным образом запишите остальные точки кривой ДАК.

- Выберите функцию **AUTO80** и нажмите на функциональную клавишу, чтобы автоматически выставить эхо-сигнал на 80% от высоты экрана.

- Выберите функцию регистрации **RECORD** и нажмите функциональную клавишу, чтобы сохранить первую точку кривой ДАК. Появившаяся надпись **(1 POINT)** подтверждает сохранение. После этого функция **gate a start** выбирается автоматически. - Для того, чтобы завершить запись эхо-сигналов ДАК, выберите **Регулировка ДАК** функцию завершения **FINISH** и нажмите функциональную клавишу.

Сохранение кривой подтверждается сообщением (STORED).



- Выберите функциональную группу **SETUP**. В функции выбора режима **TCG/ DAC MODE** автоматически устанавливается режим **DAC**.



- Выберите функцию **DAC-TYPE**, воспользуйтесь функциональными клавишами для выбора типа отображения кривой.

(STRAIGHT, CURVED, или POLYNOMIAL, т. е. прямая, кривая или многозвенная).

- Выберите функциональную группу строба A **GATE A** и установите строб в ожидаемый диапазон эхо-сигналов.

- Установите коэффициент усиления

- Выберите функцию **TCG/DAC MODE** и нажмите функциональную **Отключение оценки по ДАК** клавишу, чтобы переключиться в режим **TCG** (режим ВРУ). В Аразвертке отображается горизонтальная линия временной Пользователь может в любой момент отключить оценку по кривой регулировки усиления, все эхо-сигналы показываются в размере 80% "амплитуда-расстояние". от высоты экрана.



- Переключитесь на первый операционный уровень.

- Выберите функциональную группу **DAC/TCG**.

- Для того, чтобы вывести на экран отдельные функциональные группы и функции DAC/TCG, с помощью клавиш навигации поднимитесь вверх по экрану.

- Выберите функциональную группу **SETUP**.

- Выберите функцию **TCG/DAC MODE**, нажмите функциональную клавишу, чтобы отключить оценку по ДАК (**OFF**). Кривая ДАК более не отображается в А-развертке.

| 150 |
|-----|
|     |

#### Примечание

При отключении функции кривая ДАК не удаляется. Повторно включив функцию в режиме **TCG/DAC MODE**, можно восстановить оценку по кривой ДАК с прежними настройками.

## Удаление кривой ДАК

## Редактирование точек ДАК

- Выберите функциональную группу EDIT.

Пользователь может в любой момент удалить кривую ДАК. После Пользователь может в любой момент отредактировать точки кривой этого дистанционно-амплитудная корректировка станет возможной ДАК. только после регистрации новой кривой.

- Переключитесь на первый операционный уровень.
- Выберите функциональную группу **DAC/TCG**.

- Для того, чтобы вывести на экран отдельные функциональные - Выберите функцию POINT GAIN и нажмите на функциональную группы и функции DAC/TCG, с помощью клавиш навигации клавишу, чтобы изменить значение коэффициента усиления данной поднимитесь вверх по экрану. точки.

- Выберите функциональную группу SETUP.

- Выберите функцию удаления кривой **DELETE CURVE** и нажмите функциональную клавишу. На экране появится запрос на подтверждение удаления.

- Для того, чтобы подтвердить удаление опорного эхо-сигнала, одновременно нажмите на две функциональные клавиши. Удаление кривой подтверждается сообщением (NO CURVE).

- Выберите функцию **POINT** и нажмите на функциональную клавишу для того, чтобы выбрать номер точки ДАК для редактирования.



- Выберите функцию **POINT POS.** и с помощью функциональных **Множественные ДАК** клавиш измените расстояние до точки.

#### Добавление точек ДАК

Пользователь может добавить точки кривой ДАК.

- Выберите функциональную группу **EDIT**. Функция **POINT** по умолчанию находится в состоянии **NEW**, т. е. в режиме добавления новой точки ДАК.

- Выберите функцию **POINT GAIN** и нажмите функциональную клавишу, чтобы изменить значение коэффициента усиления новой точки.

- Выберите функцию **POINT POS.** и с помощью функциональных клавиш измените расстояние до точки.

- Наконец, сохраните новую точку ДАК, выбрав функцию **ENTER**. В зарегистрированной кривой. А-развертке отображается новая кривая ДАК.

| Mode           | OFFSET 1            |
|----------------|---------------------|
| Fixed          | -1.0 dB             |
| OFFSET         | OFFSET 2            |
| 0.5 dB         | -0.5 dB             |
| TRANSFER CORR. | OFFSET 3            |
| 0.0 dB         | +0.5 dB             |
|                | OFFSET 4<br>+1.0 dB |

Пользователь может задействовать несколько ДАК, одновременно с этим задав поправку для этих кривых относительно зарегистрированной кривой.

Поправка 0,0 дБ присваивается записанной кривой. Любые настройки, отличающиеся от нуля, приводят к появлению четырех дополнительных кривых с соответствующими поправками в дБ.

Записанная кривая отображается толстой линией, что позволяет отличить ее от прочих ДАК.

Заданные поправки могут быть использованы для всех кривых. В этом случае диапазон настройки равен 0 - 12 дБ с шагом 0,5 дБ.

В качестве альтернативы предлагается выставить поправку - Выберите функцию **MODE** и нажмите функциональную клавишу, отдельно для каждой кривой и отключить одиночные кривые чтобы задать параметры отдельной кривой с помощью функции множественных кривых. В этом случае диапазон настройки равен -24 **CUSTOM.** Функция **OFFSET** будет отключена.

- +24 дБ с шагом 0,1 дБ.

- Выберите функциональную группу поправок OFFSETS.

- Переключитесь на функциональную группу OFFSET 2.

- Выберите функцию **OFFSET 1**, с помощью функциональных клавиш - Выберите функцию **OFFSET** и с помощью функциональных клавиш настройте первую кривую. установите заданные поправки для множественных кривых.



- Аналогичным образом задайте поправки остальных кривых.



## Испытание по AWS D1.1 в режиме ДАК/ВРУ



#### Коррекция чувствительности

Функция **TRANSFER CORR.** используется для компенсации потерь при передаче сигнала в испытуемом материале. Коррекция требуется в тех случаях, когда у испытуемого объекта и испытуемого объекта поверхности имеют разные характеристики.

Значение поправки на компенсацию потерь устанавливается экспериментальным путем. Усиление изменяется соответственно заданным значениям, а форма кривой остается неизменной.

- Выберите функциональную группу поправок OFFSETS.

- Выберите функцию **TRANSFER CORR.** и с помощью функциональных клавиш установите нужное значение.

Функциональная группа AWS D1.1 служит дополнением к функциям ДАК/ВРУ для наклонного преобразователя.

Пользователь может задать контрольный коэффициент усиления для 1-го опорного эхо-сигнала с помощью функции настройки строба В **B REFERENCE.** 

Более подробное описание функций AWS D1.1 см. в главе 5.11 Анализ сварных швов (функциональная группа AWS D1.1), страница 5-41.

### Оценка эхо-сигналов с помощью ДАК/ВРУ

Оценка эхо-сигнала с помощью функции DAC/TCG возможна при соблюдении следующих условий:

• Имеется сохраненная кривая ДАК.

## Изменение времени задержки преобразователя при ДАК/ВРУ

В целом, изменение времени задержки преобразователя автоматически влияет на форму поля звуковой волны. В таком случае, теоретически, может потребоваться новый опорный эхо-сигнал. При этом незначительное изменение в линии задержки, как правило,

• Оценке подлежит сигнал от того же преобразователя, на котором вызванное износом компонентов, не оказывает заметного влияния на была записана сохраненная кривая. Использование другого заданные программно принципы определения расстояния. преобразователя, даже того же типа, запрещено!

• Кривая составлена для материала, соответствующего материалу образца.

• Настройки всех функций, влияющих на амплитуду эхо-сигнала, должны совпадать с настройками этих функций во время записи кривой. В особенности это касается напряжения, частоты, выпрямления, скорости распространения звука в среде и параметров отсечения.

#### ВНИМАНИЕ

При значительном изменении времени задержки преобразователя (например, после добавления или снятия линии задержки после записи кривой ДАК) использование ранее сохраненной кривой ДАК становится невозможным.

Это применимо к испытаниям погружением: Кривая ДАК записывается после установки последней водяной линии задержки.

Несоблюдение этого условия может привести к ошибкам в оценке.

## Автоматическое изменение точки измерения в режиме отображения времени прохождения сигнала

Оценка амплитуды эхо-сигнала в обычных условиях выполняется по пиковому значению рассматриваемого эхо-сигнала, так как иным образом невозможно гарантировать, что отображаемая амплитуда эхо-сигнала и траектория звука (расстояние в проекции, глубина положения) относятся к наивысшему эхо-сигналу строба.



#### Примечание

Перед обработкой амплитуд опорных сигналов дефектоскоп USM Go проверяет настройку точки измерения в режиме отображения времени прохождения сигнала TOF mode. Если в качестве точки измерения не установлено пиковое значение **PEAK**, прибор автоматически включает использование пикового значения. В этом случае в нижней части экрана появляется соответствующее уведомление.

# 5.19 Кривая ДАК согласно промышленному Включение функции JISDAC (ДАК в соответствии с стандарту Японии JIS Z3060-2002 (JISDAC) промышленными стандартами Японии)

У дефектоскопа USM Go имеется дополнительная функция дистанционно-амплитудной коррекции (ДАК) для оценки эхосигналов и дополнительная возможность классификации согласно JIS Z3060-2002.

Функция JISDAC позволяет активировать дистанционноамплитудную коррекцию, соответствующую требованиям промышленных стандартов Японии (JIS), в том числе три уровня оценки, отмеченные буквами L (низкий), М (средний) и Н (высокий). Эти уровни постоянно привязаны к ДАК и меняются при изменении коэффициента усиления.

Кроме того, имеется возможность классификации. Эхо-сигналы дефектов оцениваются по амплитуде с учетом их положения относительно кривых:

- Класс I: Амплитуда < уровень L
- Класс II: Уровень L < амплитуда < уровень М
- Класс III: Уровень М < амплитуда < уровень Н
- Класс IV: Амплитуда < уровень Н

| EVALMODE     | aate a start         |
|--------------|----------------------|
| EVAL MODE    | 12.50 mm             |
| dB REF       | AUTO80               |
| COLOR LEG    |                      |
| OFF          | RECORD<br>0 POINTS   |
| MAGNIFY GATE |                      |
| GATE A       | FINISH<br>(NO CURVE) |
| AGT          |                      |
| OFF          |                      |
|              |                      |

- Переключитесь на второй операционный уровень.

- Выберите функциональную группу оценки **EVAL**.
- Выберите функцию **EVAL MODE**, нажмите функциональную клавишу, чтобы выбрать пункт **JISDAC**.

- Переключитесь на первый операционный уровень. Теперь на экране отображается функциональная группа **JISDAC**.

Становится доступной ранее сохраненная кривая ДАК.

## Запись кривой ДАК

- Выберите функциональную группу **JISDAC**.

 $\wedge$ 

**ВНИМАНИЕ** - Для того, чтобы вывести на экран отдельные функциональные Перед записью кривой ДАК проведите калибровку группы и функции **JISDAC**, с помощью клавиш навигации прибора (см. главу 5.8 **Калибровка USM Go,** страница 5- поднимитесь **вверх** по экрану. 29).

После записи новой кривой удалите предыдущую кривую (если имеется). Если необходимо, перед началом записи новой кривой сохраните предыдущую кривую в базе данных.



эхо-сигнал ДАК.

GAIN 10 US \_\_\_\_\_ US \_\_\_\_ US \_\_\_\_\_ US \_\_\_\_ US \_\_\_\_\_US \_\_\_\_ US \_\_\_\_\_US \_\_\_\_US \_\_\_\_US \_\_\_\_US \_\_\_\_\_US \_\_\_\_\_US \_\_\_\_\_US \_\_\_\_US \_\_\_\_US \_\_\_\_US \_\_\_US \_

- Выберите функцию **AUTO80** и нажмите на функциональную клавишу, чтобы автоматически выставить эхо-сигнал на 80% от высоты экрана.

- Выберите функцию **RECORD** и нажмите функциональную клавишу, чтобы сохранить первую точку ДАК. Появившееся уведомление (1 **POINT**) подтверждает сохранение точки. После этого функция **gate a start** выбирается автоматически.

- Выберите функцию **AUTO80** и нажмите на функциональную клавишу, чтобы автоматически выставить эхо-сигнал на 80% от высоты экрана.

- Выберите функцию **RECORD** и нажмите функциональную клавишу, чтобы сохранить вторую точку ДАК. Появившееся уведомление (2 **POINTS)** подтверждает сохранение двух точек. После этого функция gate a start снова выбирается автоматически.

| GAIN 1.0 AMA<br>39.4 dB % | 78 SAT | 51         | 1.5          | a.s         | 6        |
|---------------------------|--------|------------|--------------|-------------|----------|
| × 0                       | 1      |            |              |             |          |
| gate a start              |        |            |              |             |          |
| 42.70 mm                  |        |            |              |             |          |
| AUTO80                    | ľ      | , ,        |              |             |          |
|                           | 1.     | • •        |              |             |          |
|                           |        |            |              |             |          |
| RECORD                    | · (] · | • •        | •            | • •         |          |
| 2 POINTS                  | • •    |            |              | • •         |          |
| FINISH                    | ηų .   |            |              | · •         | · ·      |
| (RECORDING)               | 1.1.   |            | W .          | ·           | w        |
| j. ji                     | u      | يا بي 20 ا | 1. 130 miles | .H. Bachury | 60 01600 |
| RECORD GATE A             | SETUP  | MAT ATTN   |              |             |          |

- Аналогичным образом запишите остальные точки ДАК.

- Выберите функцию gate a start и установите строб А на первый - Установите строб А на второй эхо-сигнал ДАК.
- Для того, чтобы завершить запись эхо-сигналов ДАК, выберите Настройка функции дистанционно-амплитудной характеристики функцию завершения FINISH и нажмите функциональную клавишу. по промышленному стандарту Японии JISDAC Завершение операции подтверждается сообщением (STORED).



- Выберите функциональную группу **SETUP**. Функция **JISDAC** автоматически переходит в режим ВКЛ (**ON)**.



- Выберите функцию **BOLD LINE** и нажмите функциональную клавишу для выбора уровня оценки.
- Выберите функциональную группу строба A **GATE A** и установите строб на ожидаемый диапазон эхо-сигналов.
- Установите коэффициент усиления

## Коррекция чувствительности

## Отключение оценки JISDAC

Функция TRANSFER CORR. используется для компенсации потерь Пользователь может в любой момент отключить оценку по кривой ДАК при передаче сигнала в испытуемом материале. Коррекция по промышленному стандарту Японии (функция JISDAC). требуется в тех случаях, когда у испытуемого объекта и образца поверхности имеют разные характеристики. - Переключитесь на первый операционный уровень. Значение поправки на компенсацию потерь устанавливается экспериментальным путем. Усиление изменяется соответственно - Выберите функциональную группу JISDAC. заданным значениям, а форма кривой остается неизменной. - Для того, чтобы вывести на экран отдельные функциональные

материале МАТ АТТИ.

Выберите функцию **TRANSFER CORR.** и с помощью - Выберите функциональную группу **SETUP**. функциональных клавиш установите нужное значение.

- Выберите функциональную группу настройки затухания в группы и функции JISDAC, с помощью клавиш навигации поднимитесь вверх по экрану.

- Выберите функцию **JISDAC**, нажмите функциональную клавишу, чтобы отключить оценку JISDAC (перевести в состояние OFF). ДАК и уровни оценки не отображаются в А-развертке.



### Примечание

При отключении функции кривая ДАК не удаляется. включив Повторно функцию JISDAC. можно восстановить оценку по кривой ДАК с прежними настройками.

## Удаление кривой ДАК

## Оценка эхо-сигналов с помощью ДАК

• Имеется сохраненная кривая ДАК.

Пользователь может в любой момент удалить кривую ДАК. После Оценка эхо-сигнала дефекта с помощью ДАК возможна при этого ДАК в соответствии с промышленными стандартами Японии соблюдении следующих условий: станет возможной только после регистрации новой кривой ДАК.

- Переключитесь на первый операционный уровень.
- Выберите функциональную группу **JISDAC**.
- Для того, чтобы вывести на экран отдельные функциональные группы и функции JISDAC, с помощью клавиш навигации • Кривая составлена для материала, соответствующего материалу поднимитесь вверх по экрану
- Выберите функциональную группу **SETUP**.
- Выберите функцию удаления кривой **DELETE CURVE** и нажмите кривой. В особенности это касается напряжения, частоты, функциональную клавишу. На экране появится запрос подтверждение удаления.
- Для того, чтобы подтвердить удаление опорного эхо-сигнала, одновременно нажмите на две функциональные клавиши. Удаление кривой подтверждается сообщением (NO CURVE).

- Оценке подлежит сигнал от того же преобразователя, на котором была записана сохраненная кривая. Использование другого преобразователя, даже того же типа, запрещено!
- образца.
- Настройки всех функций, влияющих на амплитуду эхо-сигнала, должны совпадать с настройками этих функций во время записи на выпрямления, скорости распространения звука в среде и параметров отсечения.

## Изменение задержки преобразователя

# Автоматическое изменение точки измерения в режиме отображения времени прохождения сигнала

В целом, изменение времени задержки преобразователя автоматически влияет на форму поля звуковой волны. В таком Оценка амплитуды эхо-сигнала в обычных условиях выполняется по случае, теоретически, может потребоваться новый опорный эхо- пиковому значению рассматриваемого эхо-сигнала, так как иным сигнал. При этом незначительное изменение в линии задержки, как образом невозможно гарантировать, что отображаемая амплитуда правило, вызванное износом компонентов, не оказывает заметного эхо-сигнала и траектория звука (расстояние в проекции, глубина влияния на заданные программно принципы определения положения) относятся к наивысшему эхо-сигналу строба. расстояния.



### ВНИМАНИЕ

При значительном изменении времени задержки преобразователя (например, после добавления или снятия линии задержки после записи кривой ДАК) использование ранее сохраненной кривой ДАК становится невозможным.

Это применимо к испытаниям погружением: Кривая ДАК записывается после установки последней водяной линии задержки.

Несоблюдение этого условия может привести к ошибкам в оценке.



### Примечание

Перед обработкой амплитуд опорных сигналов дефектоскоп USM Go проверяет настройку точки измерения в режиме отображения времени прохождения сигнала TOF mode. Если в качестве точки измерения не установлено пиковое значение **PEAK**, прибор автоматически включает использование пикового значения. В этом случае в нижней части экрана появляется соответствующее уведомление.

## 5.20 Кривая "амплитуда-расстояние" согласно Оценка с использованием CNDAC (ДАК по JB/T4730 и GB 11345 (CNDAC) промышленному стандарту Китая)

| CNDAC (корректировка "амплитуда-расстояние" согласно китайским стандартам) - это метод оценки, используемый при ультразвуковых исследованиях сварных швов и основанный на стандартах | После регистрации опорного эхо-сигнала функция CNDAC показывает контрольные линии RL, SL и EL, в зависимости от настроек функций CODE NAME (стандарт) и BLOCK (образец).                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>JB/14730 и GB 11345 Китаискои Народнои Республики.</li><li>В режиме CNDAC контрольные линии определяются по следующим показателям:</li></ul>                                 | Контрольная линия <b>SL</b> используется для измерения амплитуды. Ее<br>можно указать для всех имеющихся стробов<br>( <b>READING</b> = <b>SLA, SLB</b> , при наличии строба C - <b>SLC</b> ).                |
| • отсечение (линия отсечения RL),                                                                                                                                                    | Примеры:                                                                                                                                                                                                     |
| <ul> <li>измерение амплитуды (размерная линия SL), и</li> <li>оценка (линия оценки EL).</li> </ul>                                                                                   | Линия <b>SLA</b> показывает разницу между амплитудой эхо-сигнала строба A по сравнению с контрольной кривой SL в месте эхо-сигнала (в дБ).                                                                   |
| В качестве контрольных выбраны боковые цилиндрические отверстия заданного диаметра.                                                                                                  | Значение <b>dBrA</b> (высота эхо-сигнала строба А в дБ) совпадает с показаниями линии <b>SLA</b> .                                                                                                           |
| Опция <b>CUSTOM</b> функции <b>CODE NAME</b> позволяет задать собственные параметры образца, характеристики которого оформляются отдельными документами.                             | Величина <b>A%rA</b> показывает разницу между амплитудой эхо-сигнала строба A по сравнению с контрольной кривой SL в месте эхо-сигнала (в %). Контрольная кривая в месте эхо-сигнала считается равной 100-%. |

## Стандарты и образцы

| КОДОВОЕ<br>НАЗВАНИЕ | ОБРАЗЕЦ          | ø боковое цилиндричес<br>проверки толщины сте⊦ | кое отверстие (мм) Образ<br>чки (мм) RL (линия отсече | ец для<br>ния) (дБ) | SL (линия<br>размерности)<br>(дБ) |    | EL<br>(линия<br>оценки)<br>(дБ) | I  |
|---------------------|------------------|------------------------------------------------|-------------------------------------------------------|---------------------|-----------------------------------|----|---------------------------------|----|
| 11345A              | образец (RB)     | 3                                              | -                                                     | ДАК                 | ДАК -                             | 10 | ДАК -                           | 16 |
| 11345B              | образец (RB)     | 3                                              | -                                                     | ДАК - 4             | ДАК -                             | 10 | ДАК -                           | 16 |
| 11345C              | образец (RB)     | 3                                              | -                                                     | ДАК - 2             | ДАК -                             | 8  | ДАК -                           | 14 |
| 4730                | CSK IIA          | 2                                              | 8 46                                                  | ДАК - 4             | ДАК -                             | 12 | ДАК -                           | 18 |
| 4730                | CSK IIA          | 2                                              | 46 120                                                | ДАК + 2             | ДАК -                             | 8  | ДАК -                           | 14 |
| 4730                | CSK IIIA         | 1                                              | 8.15                                                  | ДАК + 2             | ДАК -                             | 6  | ДАК -                           | 12 |
| 4730                | CSK IIIA         | 1                                              | 15 46                                                 | ДАК + 5             | ДАК -                             | 3  | ДАК -                           | 9  |
| 4730                | CSK IIIA         | 1                                              | 46 . 120                                              | ДАК + 10            | ДАК                               |    | ДАК -                           | 6  |
| 4730                | CSK IVA          | -                                              | -                                                     | ДАК                 | ДАК -                             | 10 | ДАК -                           | 16 |
| CUSTOM              | ПОЛЬЗОВАТЕЛЬСКИЙ | -                                              | -                                                     | ДАК                 | ДАК                               |    | ДАК                             |    |

#### дистанционно-амплитудной Запись кривой ДАК Включение оценки характеристики по промышленному стандарту Китая **CNDAC**



## **ВНИМАНИЕ**

Перед записью кривой ДАК проведите калибровку прибора (см. главу 5.8 Калибровка USM Go, страница 5-29).

После записи новой кривой удалите предыдущую кривую (если имеется). Если необходимо, перед началом записи новой кривой сохраните предыдущую кривую в базе данных.

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу оценки EVAL.
- Выберите функцию **EVAL MODE**, нажмите функциональную клавишу, чтобы выбрать пункт CNDAC.
- Переключитесь на первый операционный уровень. Теперь на экране отображается функциональная группа СNDAC.
- Становится доступной ранее сохраненная кривая ДАК.

- Выберите функциональную группу **CNDAC**.

- Для того, чтобы вывести на экран отдельные функциональные группы и функции **CNDAC**, с помощью клавиш навигации поднимитесь **вверх** по экрану Выбрана функциональная группа **CODE**.

| GAIN 1.0 SA <sup>*</sup> 20 | 14  | SB/ |      | _ SbA |     | DATE |      | 8   |
|-----------------------------|-----|-----|------|-------|-----|------|------|-----|
| 10'à GR 🕅 🗖 🖓               |     | Im  |      | m     |     |      |      | 85% |
| N                           |     |     |      |       |     |      | -    |     |
| CODE NAME                   |     | *   |      |       | +   |      |      |     |
| 11345 A                     | •   | *   | ,    | •     | +   |      | •    |     |
|                             | ,   |     | ,    | · 1   |     | , ,  |      |     |
| BLOCK                       |     |     |      | . 1   |     |      | . 1  |     |
| RB                          |     |     |      | -     |     | -    | -    |     |
|                             |     |     |      |       |     |      |      |     |
|                             |     | +   |      | · 1   | +   |      | ·    |     |
|                             |     |     |      |       |     |      |      |     |
|                             |     | +   |      | · :   | +   |      |      |     |
|                             |     | •   | ,    | •     | +   |      | · 3  |     |
|                             |     |     | ,    |       |     |      |      |     |
| 0.0                         |     |     |      | 110   |     |      | 25.0 |     |
| CODE SETUP                  | REC | ORD | GATE | A E   | DIT | LINE |      |     |

- Выберите функцию **CODE NAME** и с помощью функциональных клавиш выберите стандарт.

- Переключитесь на функцию фиксации значения **BLOCK** и выберите <sup>а</sup> образец (см. Раздел **Стандарты и образцы**, страница 5-110).

- Выберите функцию **gate a start** и установите строб A на первый эхо-сигнал ДАК.



- Выберите функцию **AUTO80** и нажмите на функциональную клавишу, чтобы автоматически выставить эхо-сигнал на 80% от высоты экрана.

- Выберите функцию **RECORD** и нажмите функциональную клавишу, чтобы сохранить первую точку ДАК. Появившееся уведомление (1 **POINT)** подтверждает сохранение точки. После этого функция **gate a start** выбирается автоматически. - Установите строб А на второй эхо-сигнал ДАК.

- Для того, чтобы завершить регистрацию эхо-сигналов ДАК, выберите функцию **FINISH** и нажмите функциональную клавишу. Сохранение

- Выберите функцию **AUTO80** и нажмите на функциональную кривой подтверждается сообщением клавишу, чтобы автоматически выставить эхо-сигнал на 80% от **(STORED).** высоты экрана.

- Выберите функцию **RECORD** и нажмите функциональную клавишу, чтобы сохранить вторую точку ДАК. Появившееся уведомление (2 **POINTS)** подтверждает сохранение двух точек. После этого функция gate a start снова выбирается автоматически.



- Аналогичным образом запишите остальные точки ДАК.



### дистанционно-амплитудной - Выберите функцию СNDAC ТҮРЕ и используйте функциональные Настройка функции характеристики по промышленному стандарту Китая **CNDAC**

клавиши для выбора необходимого типа отображения линии (STRAIGHT, CURVED, или POLYNOMIAL, т. е. прямая, кривая или многозвенная). В зависимости от выбора значения SLA, A%rA, SLB и **А%гВ** обнаруживаются незначительные расхождения.

- Выберите функциональную группу **SETUP**. Функция **CNDAC MODE** автоматически переходит в режим ВКЛ (ON).





- Выберите функциональную группу строба А GATE A и установите строб на ожидаемый диапазон эхо-сигналов.

- Установите коэффициент усиления.





## Коррекция чувствительности

Можно использовать функцию **TRANSFER CORR.**, чтобы компенсировать потери на преобразование в материале, который подлежит испытанию. Коррекция необходима, если тестируемый объект и эталонный стандарт имеют разные свойства поверхности.

Необходимо определить значение настройки для компенсации потерь на преобразование экспериментальным путем. Усиление изменяется соответственно заданным значениям, а форма кривой остается неизменной.

- Выберите группу функций LINE.

- Выберите функцию TRANSFER CORR. и

используйте функциональные клавиши для настройки необходимого значения.

## Настройка контрольных линий

Можно изменить контрольные линии для RL и EL в любое время. Можно отключить оценку CNDAC в любое время. Значения в дБ всегда относятся к контрольной линии во время регистрации. Эти значения также могут быть положительными, т.е. - Переключитесь на первый операционный уровень. расположенными выше контрольной линии.

- Выберите группу функций LINE.

отдельно изменить эталонную линию RL.

- Настройте эталонные линии SL и EL аналогичным образом.



## Отключение оценки CNDAC

- Выберите функциональную группу CNDAC.

- Для того, чтобы вывести на экран отдельные функциональные - Выберите функцию RL и нажмите функциональную клавишу, чтобы группы и функции JISDAC, с помощью клавиш навигации поднимитесь вверх по экрану

- Выберите функциональную группу SETUP.

- Выберите функцию CNDAC MODE и нажмите функциональную клавишу, чтобы отключить оценку CNDAC (OFF). Кривая ДАК и линии оценки больше не отображаются в А-развертке.



### Примечание

Кривая ДАК не исчезает при выключении функции. Включив ее снова, можно использовать функцию **СNDAC MODE** для возврата к оценке CNDAC без потери настроек.

## Удаление кривой ДАК

## Оценка эхо-сигналов с помощью ДАК

• Имеется сохраненная кривая ДАК.

Пользователь может в любой момент удалить кривую ДАК. После Оценка эхо-сигнала дефекта с помощью ДАК возможна при этого ДАК в соответствии с промышленными стандартами Китая соблюдении следующих условий: станет возможной только после регистрации новой кривой ДАК.

- Переключитесь на первый операционный уровень.

- Выберите функциональную группу **CNDAC**.

• Оценке подлежит сигнал от того же преобразователя, на котором была записана сохраненная кривая. Использование другого преобразователя, даже того же типа, запрещено!

 Для того, чтобы вывести на экран отдельные функциональные группы и функции JISDAC, с помощью клавиш навигации • Кривая составлена для материала, соответствующего материалу поднимитесь вверх по экрану.

- Выберите группу функций **SETUP**.

- Выберите функцию **DELETE CURVE** и

• Настройки всех функций, влияющих на амплитуду эхо-сигнала, должны совпадать с настройками этих функций во время записи кривой. В особенности это касается напряжения, частоты,

нажмите функциональную клавишу. На экране появится запрос на выпрямления, скорости распространения звука в среде и параметров отсечения.

- Для того, чтобы подтвердить удаление опорного эхо-сигнала, одновременно нажмите на две функциональные клавиши. Удаление кривой подтверждается сообщением (NO CURVE).

## Изменение задержки преобразователя

# Автоматическое изменение точки измерения в режиме отображения времени прохождения сигнала

В целом, изменение времени задержки преобразователя автоматически влияет на форму поля звуковой волны. В таком Оценка амплитуды эхо-сигнала в обычных условиях выполняется по случае, теоретически, может потребоваться новый опорный эхо- пиковому значению рассматриваемого эхо-сигнала, так как иным сигнал. При этом незначительное изменение в линии задержки, как образом невозможно гарантировать, что отображаемая амплитуда правило, вызванное износом компонентов, не оказывает заметного эхо-сигнала и траектория звука (расстояние в проекции, глубина влияния на заданные программно принципы определения положения) относятся к наивысшему эхо-сигналу строба. расстояния.

## A Пр

### ВНИМАНИЕ

При значительном изменении времени задержки преобразователя (например, после добавления или снятия линии задержки после записи кривой ДАК) использование ранее сохраненной кривой ДАК становится невозможным.

Это применимо к испытаниям погружением: Кривая ДАК записывается после установки последней водяной линии задержки.

Несоблюдение этого условия может привести к ошибкам в оценке.



### Примечание

Перед обработкой амплитуд опорных сигналов дефектоскоп USM Go проверяет настройку точки В режиме отображения измерения времени прохождения сигнала ТОF mode. Если в качестве точки измерения не установлено пиковое значение РЕАК, прибор автоматически включает использование пикового значения. В этом случае в нижней части экрана появляется соответствующее уведомление. Только после этого может быть повторена запись базового эхо-сигнала.

| 5.21 Оценка в соответствии с методом АРД (DGS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Расстояние <b>D</b> между поверхностью сопряжения преобразователя и<br/>круглым дискообразным эквивалентным отражателем</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USM Go предлагает дополнительный метод оценки DGS (амплитуда-<br>расстояние-диаметр).                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Разница в усилении G между круглым дискообразным<br/>эквивалентным отражателем и эталонным отражателем, например,<br/>бесконечно большая задняя стенка</li> </ul>                                                                                                                                                                                                                                                                                                                                 |
| Использование АРД для измерений<br>Можно использовать режим АРД для сравнения отражательной<br>способности естественного дефекта в испытуемом объекте с<br>отражательной способностью теоретического дефекта (круглый<br>дискообразный эквивалентный отражатель) на той же глубине.<br>ВНИМАНИЕ<br>Сравнивается отражательная способность<br>естественного дефекта и отражательная способность<br>теоретического дефекта. Окончательные выводы о<br>естественном дефекте (неровность, наклонное<br>положение и т.д.) сделать нельзя. | <ul> <li>Размер S круглого дискообразного эквивалентного отражателя<br/>Влияющий параметр S остается постоянным для одной кривой в<br/>каждой серии кривых.</li> <li>Преимущество метода АРД заключается в том, что он позволяет<br/>выполнять воспроизводимые оценки малых разрывов. Такая<br/>воспроизводимость особенно важна, например, при выполнении<br/>приемочных испытаний.</li> <li>Кроме уже упомянутых влияющих параметров существуют другие<br/>факторы, влияющие на форму кривой:</li> </ul> |
| Так называемая диаграмма АРД формирует основу для этого сравнения отражательной способности. Диаграмма состоит из серии кривых, показывающих связь трех влияющих параметров:                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>затухание звука,</li> <li>потери на преобразование,</li> <li>значение амплитудной поправки,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                            |

• преобразователь.

• диаметр элемента или кристалла,

- частота,
- длина линии задержки,
- скорость задержки.

Следующие параметры преобразователя влияют на форму кривой: Можно настроить эти параметры в USM Go для использования метода АРД с большим количеством разных преобразователей и на разных материалах.



### Примечание

Перед настройкой режима DGS прибор сначала должен быть откалиброван, так как никакие из функций, влияющих на оценку АРД (скорость VELOCITY, преобразователя PROBE DELAY, задержка напряжение VOLTAGE, энергия ENERGY, подавление DAMPING, частота FREQUENCY, выпрямление REC-TIFY), больше не могут быть изменены после записи базового эхо-сигнала.

Для двухэлементых преобразователей скорость звука может быть установлена только в пределах 5350 - 6500 м/с.

Дополнительную информацию на эту тему можно найти в Главе 5.8 Калибровка USM Go, страница 5-29.

воспроизводимы только при следующих условиях:

## Достоверность метода DGS

• Оценка должна выполняться при помощи того же преобразователя, который использовался для записи базового эхо-сигнала. Другой преобразователь того же типа может использоваться после записи Оценки амплитуд эхо-сигналов при помощи метода АРД надежны и нового базового эхо-сигнала.

• Если испытуемые объекты демонстрируют характеристики • Амплитуды эхо-сигналов для значений расстояния отражателей затухания звука, которыми нельзя пренебречь, должен быть меньше половины длины ближнего поля использованного определен коэффициент затухания звука и внесен в таблицу АРД. С преобразователя могут существенно меняться по естественным этой целью коэффициент затухания звука измеряется в самом причинам из-за явления интерференции, действующего в этой зоне. испытуемом объекте или в образце, выполненном из идентичного Поэтому результаты оценки могут изменяться более чем на обычно материала, с известными эталонными отражателями на разных допустимые ±2 дБ. Хотя оценка АРД и возможна, она не расстояниях в соответствии с известными методами, а затем рекомендуется в этом случае. заносится в таблицы АРД. В отображенной затем кривой оценки будет учитываться фактическое затухание звука, вне зависимости от расстояния.

• Опорный эхо-сигнал должен при возможности исходить от тестируемого объекта. Если это невозможно, следует обеспечить, чтобы образец был выполнен из того же материала.

## Изменение задержки преобразователя при АРД

# Автоматическое изменение точки измерения в режиме отображения времени прохождения сигнала

В целом, изменение времени задержки преобразователя автоматически влияет на форму поля звуковой волны. В таком Оценка амплитуды эхо-сигнала в обычных условиях выполняется по случае, теоретически, для АРД может потребоваться новый опорный пиковому значению рассматриваемого эхо-сигнала, так как иным эхо-сигнал. При этом незначительное изменение в линии задержки, образом невозможно гарантировать, что отображаемая амплитуда как правило, вызванное износом компонентов, не оказывает эхо-сигнала и траектория звука (расстояние в проекции, глубина заметного влияния на заданные программно принципы определения положения) относятся к наивысшему эхо-сигналу строба. расстояния.



### ВНИМАНИЕ

Существующая настройка DGS больше не применима, если задержка преобразователя изменяется в значительной степени, что, например, может быть вызвано добавлением или удалением линии задержки после того, как базовый эхо-сигнал DAC был записан, перед изменением линии задержки.

Это применимо к испытаниям погружением: Настройка АРД должна делаться после настройки окончательной линии задержки воды.

Несоблюдение этого условия может привести к ошибкам в оценке.



### Примечание

Перед обработкой амплитуд опорных сигналов дефектоскоп USM Go проверяет настройку точки измерения в режиме отображения времени прохождения сигнала TOF mode. Если в качестве точки измерения не установлено пиковое значение **PEAK**, прибор автоматически включает использование пикового значения. В этом случае в нижней части экрана появляется соответствующее уведомление.

# Запуск оценки высоты эхо-сигнала в соответствии с Основные настройки для измерения APД DGS

| EVALMODE<br>EVAL MODE  | gate a start<br>12.50 mm |
|------------------------|--------------------------|
| dB REF                 | REFERENCE TYPE           |
| COLOR LEG              | BW                       |
| OFF                    | REF SIZE                 |
| Magnify gate<br>gate a | RECORD REF<br>(NO REF)   |
| AGT<br>OFF             |                          |

- Переключитесь на второй операционный уровень.
- Выберите функциональную группу оценки EVAL.
- Выберите функцию **EVAL MODE** и нажмите функциональную клавишу для выбора АРД **DGS**.
- Переключитесь на первый операционный уровень. Группа функций АРД **DGS** теперь отображается там.

Можно выбрать преобразователь и установить другие параметры АРД на этом этапе.

- Выберите группу функций АРД **DGS**.

- Для того, чтобы вывести на экран отдельные функциональные группы и функции APД (DGS), с помощью клавиш навигации поднимитесь **вверх** по экрану.

| GAIN 1.0 RMA<br>43.8 dB % | 86  | SA*<br>nn | 49.   | 99  | RS<br>In |      | R   | Ar<br>N |         | 0 |
|---------------------------|-----|-----------|-------|-----|----------|------|-----|---------|---------|---|
| N                         |     | •         |       |     |          |      |     |         |         |   |
| DGS MODE                  |     | Ť         | ,     | •   |          | ÷    |     | +       |         |   |
| OFF                       | •   | ÷         | -     | +   |          | ٠    | -   | +       |         |   |
|                           |     | ŀ         | ,     |     |          | ,    |     |         |         |   |
| DGS CURVE                 |     |           |       |     |          |      |     | +       |         |   |
| 35.00 mm                  |     |           |       |     |          |      |     |         |         |   |
| PROBE #                   |     |           |       |     |          | e.   |     |         |         |   |
| 0                         |     | ŀ         |       |     |          |      |     |         |         |   |
| PROBE NAME                |     | ŀ         |       | ÷   |          | •    |     | ÷       | · [     |   |
| N23 2                     | •   | +         | -     | ÷   |          | +    | -   | +       | · (     |   |
| J J                       |     |           |       | 100 |          |      |     | 200 .   | A 259.9 |   |
| SETUP DGS PROB            | REF | ECHO      | REF C | ORR | MAT      | ATTN | OFF | SETS    | GATE    | A |

- Выберите отдельные функции в разных группах функций и используйте функциональные клавиши для определения соответствующих настроек:

• DGS CURVE (запись кривой для оценки АРД) Может быть • DELAY VELOCITY использована для определения диаметра круглого дискообразного Скорость звука в линии задержки преобразователя; предустановлена отражателя, который будет использоваться для отображения кривой для программируемых преобразователей. АРД и в качестве порога записи для оценок эхо-сигналов. REFERENCE TYPE • **PROBE #** (номер преобразователя) Тип используемого эталонного отражателя (задняя стенка, боковое Номера преобразователей жестко цилиндрическое дискообразный К отверстие круглый относятся или запрограммированным преобразователям со всеми настройками эквивалентный отражатель). (название, задержка преобразователя, диаметр элемента и частота не могут быть изменены, см. страница 5-130). Все параметры для • REF SIZE преобразователя с номером **0** могут программироваться Диаметр эталонного отражателя. пользователем. • REF ATTEN • **PROBE NAME** (Название преобразователя) Затухание звука в образце. Название преобразователя относится к выбранному номеру номера • AMPL CORRECT (коррекция по амплитуде) преобразователя и может быть изменено для преобразователя 0 на втором операционном уровне при Требуется, если используется наклонный преобразователь и эхонеобходимости (группа функций АРД DGS, функция PROBE NAME). сигнал отраженный от цилиндрической поверхности образца К1 или К2 в качестве эталонного отражателя. • XTAL FREQUENCY (частота преобразователя) Частота элемента программируемых Для наклонных преобразователей SWB...-5 значение амплитудной кристалла; предустановлена или для поправки относится к 3 мм боковому цилиндрическому отверстию на преобразователей. образце К1 как к эталонному отражателю. • EFF. DIAMETER Эффективный диаметр элемента или кристалла используемого • TEST ATTEN преобразователя; программируемых Затухание звука в тестируемом объекте. предустановлен для преобразователей. • TRANSFER CORR.

Потери на преобразование в тестируемом материале.

5 Эксплуатация

- Выберите функциональную группу строба А **GATE A**.

- Выберите функцию **TOF MODE** и нажмите функциональную Для того, чтобы иметь возможность отобразить требуемую кривую клавишу для установки точки измерения в режиме отображения АРД, необходимо записать опорный эхо-сигнал. времени прохождения сигнала на **PEAK.** - Выберите группу функций АРД **DGS.** 

- Выберите группу функций **AUTOCAL** и откалибруйте USM Go (см. - Для того, чтобы вывести на экран отдельные функциональные Главу 5.8 **Калибровка USM Go**, страница 5-29). группы и функции АРД (DGS), с помощью клавиш навигации поднимитесь **вверх** по экрану.

- Выберите функциональную группу строба А GATE А.

- Получите эхо-сигнал эталонного отражателя, в данном случае отраженный донный сигнал от испытуемого объекта.

Запись базового эхо-сигнала и включение кривой АРД

- После этого установите строб А на опорный эхо-сигнал.

- Выберите группу функций опорного эхо-сигнала **REF ECHO.** 

- Выберите функцию регистрации **RECORD REF** и нажмите функциональную клавишу. Запись подтверждается индикацией (recorded). Значок состояния **A DGS reference is stored** (Опорный сигнал АРД сохранен) отображается в верхнем левом углу, рядом с Аразверткой (см. страница 0-7).





- Выберите функциональную группу **SETUP.** 

- Выберите функцию **DGS MODE** и нажмите функциональную клавишу, чтобы включить оценку АРД. Кривая АРД рассчитывается и отображается на А-развертке.

Принимая за основу диаграмму АРД, USM Go рассчитывает требуемую чувствительность испытания для отображения кривой эхосигнала от 3 мм бокового цилиндрического отверстия с максимумом на 80 % высоты экрана и устанавливает эту настройку. Текущее значение усиления при этом установлено на 0.

Кривая автоматически регулируется в случае последующих изменений усиления.

| Усиление может быть изменено в любое время. Разница по           | Блокировки, сообщения об ошибках                                   |
|------------------------------------------------------------------|--------------------------------------------------------------------|
| отношению к значению калибровки во время калибровки АРД          |                                                                    |
| напрямую отображается в верхнем левом углу над значением         | Пока хранится действующий базовый эхо-сигнал, никакие функции      |
| усиления (без обозначения). Если функция DGS MODE установлена    | не должны меняться, так как это может вызвать некорректную оценку  |
| на значение OFF, а затем опять на ON, изначальная настройка      | АРД. за исключением задержки преобразователя <b>PROBE DELAY</b> (с |
| усиления отображается со значением расхождения +0.0.             | жестким допуском) Еспи предпринята попытка изменить такую          |
|                                                                  | функцию появится спелующее сообщение об ощибке:                    |
| В дальнейшем кривая АРД может быть отрегулирована на             |                                                                    |
| предполагаемое значение ERS (эквивалентного размера отражателя). | Function locked: DGS reference has been recorded                   |
|                                                                  |                                                                    |
| - Переключитесь на второй операционный уровень.                  | (Функция заолокирована: записан сигнал АРД!)                       |
|                                                                  |                                                                    |
| - Выберите функциональную группу оценки <b>EVAL.</b>             | Оценка АРД таким же образом должна быть отключена, а опорныи       |
|                                                                  | эхо-сигнал удален при выборе нового преобразователя, например      |
| - Выберите значение эквивалентного размера отражателя ERS для    | для нового теста.                                                  |
| одного из пунктов в полосе измерений (см. Раздел                 |                                                                    |
| Конфигурирование полосы измерений, страница 5-59).               |                                                                    |

## Затухание звука и коррекция передачи

Существуют две возможности настройки затухания звука испытуемом объекте:

• до калибровки АРД в группе функций АРД **REF CORR**, используя функцию **REF ATTEN** 

• в любое время (даже после калибровки АРД) в группе функций **MAT ATTN**, используя функцию **TEST ATTEN** 

Коррекции передачи могут устанавливаться следующим образом:

• до калибровки АРД

в группе функций АРД **REF CORR**, используя функцию корректировки по амплитуде **AMPL CORRECT** 

• в любое время (даже после калибровки АРД)

в группе функций MAT ATTN, используя функцию TRANSFER CORR.

Настройки функций AMPL CORRECT и TRANSFER CORR. имеют суммарный эффект, так же как и настройки функций REF ATTEN и TEST AT TEN.

## Использование множества кривых АРД

в После включения оценки АРД по крайней мере одна кривая отображается для определенного эквивалентного размера отражателя. Для некоторых технических условий испытаний в соответствии с АРД должны контролироваться определенные допустимые пределы в дБ ниже и/или выше этой кривой.

Можно установить до четырех дополнительных кривых, регулируя их отклонения от исходной кривой в значениях в дБ. Эти кривые не оказывают влияния на отображаемые значения измерения и на другие настройки.



| Отключени                   | е оценки АРД                                                                                                   | Удаление базового эхо-сигнала АРД                                                                                           |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Оценка АРД м                | иожет быть отключена в любое время.                                                                            | Можно удалить эхо-сигнал эталонного отражателя. После этого оценка АРД невозможна до тех пор. пока не зарегистрирован новый |  |  |
| - Переключит                | есь на первый операционный уровень.                                                                            | базовый эхо-сигнал.                                                                                                         |  |  |
| - Выберите гр               | уппу функций АРД <b>DGS.</b>                                                                                   | - Переключитесь на первый операционный уровень.                                                                             |  |  |
| - Для того,<br>группы и ф   | чтобы вывести на экран отдельные функциональные<br>vнкции АРД (DGS). с помошью клавиш навигации                | - Выберите группу функций АРД <b>DGS.</b>                                                                                   |  |  |
| поднимитесь                 | вверх по экрану                                                                                                | - Для того, чтобы вывести на экран отдельные функциональные                                                                 |  |  |
| - Выберите ф                | ункциональную группу <b>SETUP.</b>                                                                             | группы и функции АРД (DGS), с помощью клавиш навигации<br>поднимитесь <b>вверх</b> по экрану.                               |  |  |
| - Выберите<br>клавишу, чтоб | функцию <b>DGS MODE</b> и нажмите функциональную<br>5ы отключить оценку АРД <b>(OFF).</b> Кривая АРД больше не | - Выберите группу функций <b>REF CORR.</b>                                                                                  |  |  |
| отображается                | на А-развертке.                                                                                                | - Выберите функцию <b>DELETE REF</b> и нажмите функциональную клавишу. На экране появится запрос на подтверждение удаления. |  |  |
|                             | Примечание                                                                                                     |                                                                                                                             |  |  |
| 13                          | При выключении функции калибровки АРД не исчезает.                                                             | - Нажмите две функциональные клавиши одновременно, чтобы подт-                                                              |  |  |
|                             | <b>МОДЕ</b> для возврата к оценке АРД без потери настроек.                                                     | индикацией (NO REF).                                                                                                        |  |  |

## Данные преобразователя

| #     | Название<br>преобразователя | Длина волны в<br>стали<br>[мм] | Минимальный диаметр<br>бокового цилиндрического<br>отверстия<br>[мм] | Длина ближнего поля<br>в стали<br>[мм] | Минимальное<br>расстояние в стали<br>[мм] |
|-------|-----------------------------|--------------------------------|----------------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| 1     | B1-S                        | 6,0                            | 9,0                                                                  | 23                                     | 35                                        |
| 2     | B2-S                        | 3,0                            | 4,5                                                                  | 45                                     | 68                                        |
| 3     | B4-S                        | 1,5                            | 2,3                                                                  | 90                                     | 135                                       |
| 4     | MB2-S                       | 3,0                            | 4,5                                                                  | 8                                      | 12                                        |
| 5     | MB4-S                       | 1,5                            | 2,3                                                                  | 15                                     | 23                                        |
| 6     | MB5-S                       | 1,2                            | 1,8                                                                  | 20                                     | 30                                        |
| 7 9   | MWB2                        | 1,6                            | 2,4                                                                  | 15                                     | 23                                        |
| 10 12 | MWB4                        | 0,8                            | 1,2                                                                  | 30                                     | 45                                        |
| 13.15 | SWB2                        | 1,6                            | 2,4                                                                  | 39                                     | 59                                        |
| 16 18 | SWB5                        | 0,7                            | 1,1                                                                  | 98                                     | 147                                       |
| 19 21 | WB1                         | 3,3                            | 5,0                                                                  | 45                                     | 68                                        |
| 22.24 | WB2                         | 1,6                            | 2,4                                                                  | 90                                     | 135                                       |

| #  | Преобразователь | Длина волны в стали<br>[мм] | Глубина фокуса в стали<br>[мм] |  |
|----|-----------------|-----------------------------|--------------------------------|--|
| 25 | MSEB-2          | 3,0                         | 8 ±2                           |  |
| 26 | MSEB-4          | 1,5                         | 10 ±2                          |  |
| 27 | MSEB-4 0°       | 1,5                         | 18 ±4                          |  |
| 28 | MSEB-5          | 1,2                         | 10 ±2                          |  |
| 29 | SEB-1           | 5,9                         | 20 ±4                          |  |
| 30 | SEB-2 KF5       | 3,0                         | 6 ±2                           |  |
| 31 | SEB-4 KF8       | 1,5                         | 6 ±2                           |  |
| 32 | SEB-2           | 3,0                         | 15 ±3                          |  |
| 33 | SEB-4           | 1,5                         | 12 ±2                          |  |
| 34 | SEB-20°         | 1,5                         | 12 ±2                          |  |



### Примечание

Кривые АРД для двухэлементных преобразователей получаются не из общей диаграммы, а индивидуально измеряются для стали (5920 м/с) и хранятся в приборе.

Можно проводить оценку АРД только с одним из имеющихся двухэлементных преобразователей, если скорость звука находится между 5330 и 6500 м/с.

| Наклонные преобразователи trueDGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В настоящее время доступны следующие преобразователи, использующие технологию trueDGS®: |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Наклонные преобразователи trueDGS® создают симметричное относительно оси вращения акустическое поле в тестируемом                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • MWB45-2 tD (преобразователь № <b>35)</b>                                              |
| материале как вертикально излучающие круглые элементы.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • MWB60-2 tD (преобразователь № <b>36)</b>                                              |
| Поэтому оценка АРД с использованием этих наклонных преобразователей значительно более точна, чем при использовании                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • MWB70-2 tD (преобразователь № <b>37)</b>                                              |
| прямоугольные элементы. В случае обычных наклонных преобразователей оценка отражателей отражателей оценка отражателей оценка отражателей оценка отражателей оценка отражателей отрака отражателей отрака отражателей отражателей отрака отр | • MWB45-4 tD (преобразователь № <b>38)</b>                                              |
| с методом АРД, может быть завышена.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • MWB60-4 tD (преобразователь № <b>39)</b>                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • MWB70-4 tD (преобразователь № <b>40)</b>                                              |

Эти новые преобразователи могут выбираться в приборе. Соответствующие настройки хранятся в приборе и активизируются, когда преобразователь выбран.

Документирование 6

## 6.1 Протоколы испытаний

Примечание Все данные

### Хранение протоколов испытаний

На USM Go можно хранить протоколы испытаний и файлы А-Протоколы испытаний сохраняются как файлы развертки. изображений в формате JPG и BMP, а также как файлы ASCII в формате UGO.

сохраняются

достаточно свободного места.

на

## Сохранение с помощью функции СОРУ



### Примечание

случае, если В было повторно указано vжe существующее название файла для сохранения, к его имени автоматически прибавляется порядковый номер, например: FILE 002.

- Проверьте расположение и название файла для сохранения в функциональной группе FILES на втором операционном уровне.

Убедитесь, что на используемой SD карте имеется - Снова переключитесь на первый операционный уровень и нажмите функциональную клавишу, которая отвечает за функцию СОРУ (копирование).

Файлы А-развертки, а также текущие настройки и данные можно Рядом с файлом А-развертки в процессе сохранения отобразится сохранить в любой момент при помощи функции СОРУ, которую соответствующая иконка (см. раздел Иконки индикатора необходимо закрепить за одной из функциональных клавиш состояния, страница 0-7 в начале данного руководства по (см. Глава 5.3 Назначение функциональных клавиш, страница 5-8) эксплуатации).

карту памяти SD.

Также для сохранения протоколов испытаний можно воспользоваться соответствующей функцией на втором операционном уровне.

|                                                                                                                                                                                                             | панели (USM Go+) для выбора директории.                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FILENAME<br>FILES<br>ACTION                                                                                                                                                                                 | - Переключитесь на функцию <b>ACTION</b> (действие) и с помощью<br>функциональных клавиш выберите одну из функций: <b>STORE</b><br><b>REPORT</b> (сохранить протокол испытания) или <b>FAST REPORT</b><br>(быстрый протокол). |
| STORE REPORT<br>ENTER                                                                                                                                                                                       | - Переключитесь на функцию <b>FILENAME</b> (название файла) и<br>нажмите на джойстик (USM Go) или на центральную клавишу<br>клавишной панели (USM Go+).                                                                       |
| DIRECTORY<br>GUI                                                                                                                                                                                            | - Используйте клавиши навигации и выберите опцию<br><new file=""> (&lt;НОВЫЙ ФАЙЛ&gt;) и нажмите джойстик (USM Go) или<br/>центральную клавишу клавишной панели (USM Go+).</new>                                              |
| - Переключитесь на второй операционный уровень.                                                                                                                                                             | - Используйте клавиши навигации, чтобы выбрать первый символ в<br>названии файла.                                                                                                                                             |
| - В функциональной группе <b>FILES</b> (ФАЙЛЫ) выберите функцию - <b>DIRECTORY</b> и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+). Отображается директория карты памяти SD. | - Используйте клавиши навигации чтобы переключиться и выбрать<br>следующий символ.<br>- Нажмите на джойстик (USM Go) или на центральную клавишу                                                                               |

- Используйте функциональные клавиши для выбора директории на файла. карте SD.

- Переключитесь на функцию ENTER (ввод) и нажмите на джойстик Отображение протоколов испытаний (USM Go) или на центральную клавишу клавишной панели.

Сохраненные протоколы испытаний могут отображаться на дисплее Протокол испытания сохранится в выбранном каталоге на карте устройства. памяти SD под заданным именем.



### Примечание

Файлы отображаются только в формате ВМР. Другие файлы на карте памяти SD не отображаются в качестве возможных вариантов.

Примечание

Можно создавать и удалять каталоги, вставив карту памяти SD в устройство чтения SD-карт вашего компьютера или подключив USM Go к компьютеру с - Переключитесь на второй операционный уровень. помощью кабеля USB (см. Раздел USB-Интерфейс, страница 8-3).

В функциональной группе FILES (ФАЙЛЫ) выберите функцию **DIRECTORY** и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+). Отображается директория карты памяти SD.

- Используйте функциональные клавиши для выбора директории на карте SD.

- Нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+) для выбора директории.

- Переключитесь на функцию **ACTION** и при помощи функциональных клавиш выберите функцию **SHOW REPORT (**показать протокол).

- Переключитесь на функцию **FILENAME** (название файла) и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации, чтобы выбрать название нужного файла.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). Выбранная позиция автоматически переключится на функцию **ENTER**.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

Загрузка займет несколько секунд, а затем на экране отобразится В верхней части экрана отображаются сведения о протоколе: протокол испытания.

- расположение на карте памяти и имя файла
- дата и время
- номер устройства и версия ПО

| USM | Go |
|-----|----|

| USMGO/PROT A2.8M | P               |      |             |            |      |        |       |        |        |       |
|------------------|-----------------|------|-------------|------------|------|--------|-------|--------|--------|-------|
| 05.07.2013 14    | 08:10           |      | INSTRUM     | <b>IEN</b> | TID  | USMGO  | 0910( | 154    | 1      | /2.08 |
| GAIN 0.2 RMA=    | 80 %            | DA/= |             | 88         | aka= | 80     | ) %   |        |        |       |
| 47.6 dB sa/=     | 42. 18 mm       | RA/= |             | <b>BB</b>  | ANB= | 50     | )%    |        |        | 5h    |
| ✓ Ai             |                 |      |             |            |      | •      |       |        |        |       |
| RANGE            | 1               |      |             |            | -    |        |       |        |        | -     |
| 100.00 mm        | - i             | *    |             | 1          |      | *      |       | *      |        |       |
|                  | . I             | +    |             |            | -    | +      | ·     | +      |        | -     |
| PROBE DELAY      | ].              |      |             |            | ÷    |        |       |        | ,      | :     |
| 0.000 µs         |                 |      |             |            |      |        |       |        |        |       |
| VELOCITY         | 1.              | +    |             |            | ÷    |        |       |        |        |       |
| 5800 m/s         | i .             | +    | ,           |            |      |        | ,     | •      | ,      |       |
| STEEL STNLSS     | 5               |      |             | .          | -    |        | _     |        | 4      |       |
| display delay    | E .             | •    | _           | -          | -    | 1      | i.    |        | 1      |       |
| 0.000 µs         | · ·             | +    |             | ÷          |      | 1      | 1     | · 1    | 1      |       |
|                  | <u>, a.a. 1</u> | .l   | վուս[30, վո |            | 1    | 198. J | 1170  | 1.1916 | A DORA | Mar.  |

- При помощи клавиш навигации можно изменить вид для **Печать протоколов испытаний** отображения других данных о протоколе испытаний, при условии, что эти параметры были также выбраны при сохранении. USM Go не предназначен для прямого

| KANGE  | PULSER                                                | RECEIVER                                                     | db KEF                                                                     | AUTOLAL                                                         | GALEZ                       | A GALEB                                                     |
|--------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|
|        |                                                       | CV                                                           | Parameter                                                                  | Table                                                           |                             |                                                             |
| RANGE  | RANGE<br>100.0                                        | P<br>DOmm 0                                                  | ROBE DELAY                                                                 | VELOCITY<br>5800 m/s                                            |                             | DISPLAY DELAY<br>0.000 us                                   |
| PULSER | LOW                                                   | GE                                                           |                                                                            | DAMPING<br>1000 OHM                                             | 1                           |                                                             |
| RECV   | FREOU<br>1 - 5 N                                      | ENCY R<br>1Hz N                                              | ECTIFY<br>EG HALFWAVI                                                      | DUAL<br>E ON                                                    |                             | REJECT<br>0%                                                |
| PRF    | AUTO                                                  | DDE P                                                        | RF VALUE                                                                   |                                                                 |                             |                                                             |
| GATES  | GATE /<br>29.97<br>GATE E<br>50.00<br>GATE (<br>50.00 | A START G<br>mm 11<br>3 START G<br>mm 2<br>C START G<br>mm 5 | ATE A WIDTH<br>7.90 mm<br>ATE B WIDTH<br>0.00 mm<br>ATE C WIDTH<br>0.00 mm | A THRESH<br>AGT = 23<br>B THRESH<br>AGT = 50<br>C THRESH<br>20% | OLD<br>%<br>OLD<br>%<br>OLD | TOF MODE<br>FLANK<br>TOF MODE<br>FLANK<br>TOF MODE<br>FLANK |
| TRIG   | PROBE                                                 | ANGLE T                                                      | HICKNESS<br>50.00 mm                                                       | X VALUE                                                         | n                           | O-DIAMETER<br>FLAT                                          |
| GAIN   | GAIN<br>47.5 (                                        | dB (                                                         | EF GAIN<br>0.0 dB                                                          | TRANSFER<br>1.4 dB                                              | CORR.                       |                                                             |
| FILE   | LAST (<br>PROT /                                      | DATASET LOAD                                                 | DED                                                                        |                                                                 |                             |                                                             |
| dB REF | MODE                                                  | R                                                            | EFERENCE                                                                   |                                                                 |                             |                                                             |

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно отображения протокола испытаний.

USM Go не предназначен для прямого подключения к принтеру.

Можно воспользоваться соответствующими стандартными программами (редакторами текстов и изображений), установленными на вашем ПК для просмотра, редактирования и печати протоколов испытаний и файлов А-развертки, которые USM Go сохраняет в форматах JPG и BMP, а также файлов ASCII в формате UGO.

Для этого вставьте карту памяти SD в устройство чтения SD-карт вашего компьютера или подключите USM Go к ПК с помощью кабеля USB (см. Раздел **USB-Интерфейс,** страница 8-3).
USM Go

Могут быть удалены только файлы типа UGO. Файлы форматов ВМР и JPG сохраняются.

USM Go к компьютеру с помощью кабеля USB (см. Раздел USB- - Переключитесь на второй операционный уровень.

Примечание

- В функциональной группе FILES (ФАЙЛЫ) выберите функцию Также можно удалять отдельные файлы серий данных на втором **DIRECTORY** и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+). Отображается директория карты памяти SD.

> - Используйте функциональные клавиши для выбора директории на карте SD.

> - Нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+) для выбора директории.

> - Переключитесь на функцию **ACTION** и при помощи функциональных клавиш выберите функцию DELETE DATASET (удалить набор данных).

Интерфейс, страница 8-3).

операционному уровне USM Go.

Удаление протоколов испытаний

Можно удалять файлы и каталоги, вставив карту памяти SD в устройство чтения SD-карт вашего компьютера или подключив



GUI

FILENAME

FILENAME

FILES

ACTION



- Переключитесь на функцию **FILENAME** (название файла) и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации чтобы выбрать название нужного файла набора данных.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). Выбранная позиция автоматически переключится на функцию ввода **ENTER**.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). В верхней части экрана появится сообщение **DOUBLE KEY PRESS KEY TO CONFIRM (для подтверждения нажмите две клавиши).** 

- Для того, чтобы подтвердить действие одновременно нажмите на две функциональные клавиши. Файл набора данных удален.

YES

YES

SUMMARY

REPORT

IMAGE IN REPOR

PARAM IN REPOR

PARAMETERS

# Сохранение файлов А-развертки и параметров в протоколе испытаний

- Переключитесь на второй операционный уровень.

- В функциональной группе **FILES** выберите функцию **IMAGE IN REPOR** (изображения в протоколе) и нажмите на функциональную клавишу для выбора пункта **YES**, чтобы активировать функцию.

- Выберите функцию **PARAM IN REPOR** (параметры в протоколе) и нажмите на функциональную клавишу для выбора пункта **YES**, чтобы активировать функцию.

Теперь при сохранении протокола испытаний в него будет включена соответствующая информация.

При сохранении протоколов испытаний можно выбрать сохранять ли файлы А-развертки вместе со списком параметров. Для этого нужно активировать соответствующую функцию.

| USM | Go |
|-----|----|
|-----|----|

## 6.2 Сохранение заметок

#### - Переключитесь на второй операционный уровень. MEMO/HDR HEADER EDIT - В функциональной группе FILES выберите функцию MEMO EDIT <new header> (редактировать памятку) и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). MEMO EDIT <new memo> - Используйте клавиши навигации и выберите опцию **NEW FILE>** (<HOBЫЙ ФАЙЛ>) и нажмите джойстик (USM Go) или MEMO IN REPORT центральную клавишу клавишной панели (USM Go+). NO - Используйте клавиши навигации, чтобы выбрать первый символ в HDR IN REPORT названии файла. NO - Используйте клавиши навигации чтобы переключиться и выбрать следующий символ.

Создание нового файла памятки

Можно хранить короткие заметки или памятки в виде текстовых файлов. Содержание этих файлов заметок будет прикреплено к - Нажмите на джойстик (USM Go) или на центральную клавишу протоколу испытаний, если включена соответствующая функция. клавишной панели (USM Go+) чтобы закрыть окно ввода названия Каждый файл заметки может содержать максимум 5 строк, файла. Теперь можно ввести текст. - Используйте клавиши навигации чтобы ввести текст.

Файл памятки хранится в подкаталоге **МЕМО** текущего каталога на карте памяти SD.

- В конце нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно ввода.

## Редактирование файла памятки

Можно в любое время редактировать файлы заметки, сохраненные на карте памяти SD.

- Переключитесь на второй операционный уровень.

- В функциональной группе **FILES** выберите функцию **MEMO EDIT** (редактировать памятку) и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- При помощи клавиш навигации выберите название необходимого файла и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации, чтобы изменить текст.

- В конце нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно ввода.



#### Примечание

Для изменения заметок можно использовать любой текстовый редактор, достаточно вставить карту памяти SD в устройство чтения SD-карт вашего компьютера или подключив USM Go к компьютеру с помощью кабеля USB (см. Раздел **USB-Интерфейс,** страница 8-3).

Пожалуйста, обратите внимание, что каждый файл памятки может содержать максимум 5 строк, состоящих из 31 символа каждая.

## Прикрепление файла заметки к протоколу испытаний

Можно прикрепить текстовый файл или файл памятки к одному или нескольким протоколам испытаний. Для этого нужно выбрать файл заметки и включить функцию **MEMO IN REPORT** (заметка в протоколе).

- Переключитесь на второй операционный уровень.

- В функциональной группе **FILES** выберите функцию **MEMO EDIT** (редактировать памятку) и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- При помощи клавиш навигации выберите название необходимого файла и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- После этого снова нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно редактирования текста.

- Переключитесь на функцию **MEMO IN REPOR** и нажмите на функциональную клавишу для выбора пункта **YES**, чтобы активировать функцию.

При следующем сохранении протокола испытаний к нему в конце будет прикреплена информация из выбранного файла заметки.

| AT A AD                         | 00 A 14                                                                                                                                                                             | -                                                                                                                                   |                                                                                                              | E E                                                          |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 47.6 dB [St                     | 42.18 mm 104                                                                                                                                                                        | - ···· m H                                                                                                                          | 104 00 5                                                                                                     | 58                                                           |
|                                 |                                                                                                                                                                                     |                                                                                                                                     |                                                                                                              |                                                              |
| 75                              |                                                                                                                                                                                     | · · ·                                                                                                                               | 1                                                                                                            | · · i                                                        |
| KANGE                           |                                                                                                                                                                                     |                                                                                                                                     |                                                                                                              |                                                              |
| 100.0                           | 0 mm; '                                                                                                                                                                             |                                                                                                                                     |                                                                                                              | • • •                                                        |
|                                 |                                                                                                                                                                                     |                                                                                                                                     |                                                                                                              |                                                              |
| INTER THE AV                    |                                                                                                                                                                                     |                                                                                                                                     |                                                                                                              |                                                              |
| MODE DELM                       |                                                                                                                                                                                     |                                                                                                                                     |                                                                                                              | · · ·                                                        |
| 0.0                             | oo µs                                                                                                                                                                               |                                                                                                                                     |                                                                                                              |                                                              |
|                                 |                                                                                                                                                                                     |                                                                                                                                     |                                                                                                              |                                                              |
| VELOCITY                        |                                                                                                                                                                                     |                                                                                                                                     | 1                                                                                                            |                                                              |
| EDO                             | 2 m/c                                                                                                                                                                               |                                                                                                                                     |                                                                                                              |                                                              |
| 200                             | u mys                                                                                                                                                                               | x x                                                                                                                                 | 4 F F L                                                                                                      | · · i                                                        |
| STEEL SI                        | INLSS:                                                                                                                                                                              |                                                                                                                                     |                                                                                                              | 1 I I I I I I I I I I I I I I I I I I I                      |
| DISPLAY DELA                    | W   '                                                                                                                                                                               |                                                                                                                                     |                                                                                                              | 1 1 1 1                                                      |
| 0.0                             | 00 us                                                                                                                                                                               | · · ·                                                                                                                               |                                                                                                              |                                                              |
| 010                             | 00 00                                                                                                                                                                               |                                                                                                                                     |                                                                                                              | - Andrea I                                                   |
|                                 | MindNia                                                                                                                                                                             | J. S. L. M. L. J. S. L.                                                                                                             |                                                                                                              | and the second field                                         |
| RANGE P                         | ULSEK RECEIV                                                                                                                                                                        | EK (15 KEP                                                                                                                          | AUTOCAL GAIN                                                                                                 | CALC GALEB                                                   |
|                                 |                                                                                                                                                                                     | CV Parameter 1                                                                                                                      | able                                                                                                         |                                                              |
| RANGE                           | RANGE                                                                                                                                                                               | PROBE DELAY                                                                                                                         | VELOCITY                                                                                                     | DISPLAY DELAY                                                |
|                                 | 100.00 mm                                                                                                                                                                           | 0.000 µs                                                                                                                            | 5800 m/s                                                                                                     | 0.000 µs                                                     |
| PULSER                          | VOUTAGE                                                                                                                                                                             |                                                                                                                                     | DAMPING                                                                                                      |                                                              |
| 00014                           | LOW FOR                                                                                                                                                                             | ACC TOTAL                                                                                                                           | 1000 OHM                                                                                                     | OF KOT                                                       |
| NEC V                           | PREDUENCY                                                                                                                                                                           | NECLAR CARGE                                                                                                                        | DUAL                                                                                                         | REJECT                                                       |
| 201                             | DRE MOOT                                                                                                                                                                            | COLOR MALLIE                                                                                                                        | 04                                                                                                           | 0.78                                                         |
| - Thr                           | ALCO LOW                                                                                                                                                                            | A00 Hz                                                                                                                              |                                                                                                              |                                                              |
| CATES                           | GATE & START                                                                                                                                                                        | GATE & WATTH                                                                                                                        | A THRESHOLD                                                                                                  | TOE NODE                                                     |
| LT11 L L                        | SPEC PLATER                                                                                                                                                                         | 12.00 mm                                                                                                                            | ACT _ 2700                                                                                                   | FLANK                                                        |
|                                 | 29.97 mm                                                                                                                                                                            | 17.29.1 mm                                                                                                                          | AUX1 = 2.335                                                                                                 |                                                              |
|                                 | 29.97 mm<br>GATE B START                                                                                                                                                            | GATE B WIDTH                                                                                                                        | B THRESHOLD                                                                                                  | TOF NODE                                                     |
|                                 | GATE B START<br>SOLOO mm                                                                                                                                                            | GATE 8 WIDTH<br>20,00 mm                                                                                                            | AGT = 23%<br>B THRESHOLD<br>AGT = 50%                                                                        | TOF NOCE<br>FLANK                                            |
|                                 | GATE B START<br>SO,00 mm<br>GATE C START                                                                                                                                            | GATE B WIDTH<br>20,00 mm<br>GATE C WIDTH                                                                                            | AGT = 23%<br>B THRESHOLD<br>AGT = 50%<br>C THRESHOLD                                                         | TOF MODE<br>FLANK<br>TOF MODE                                |
|                                 | 29.97 mm<br>GATE B START<br>50.00 mm<br>GATE C START<br>50.00 mm                                                                                                                    | GATE B WIDTH<br>20.00 mm<br>GATE C WIDTH<br>50.00 mm                                                                                | AGT = 25%<br>B THRESHOLD<br>AGT = 50%<br>C THRESHOLD<br>20%                                                  | TOF NOCE<br>FLANK<br>TOF NOCE<br>FLANK                       |
| TRIG                            | 29.97 mm<br>GATE B START<br>50.00 mm<br>GATE C START<br>50.00 mm<br>PROBE ANGLE                                                                                                     | GATE B WIDTH<br>20,00 mm<br>GATE C WIDTH<br>50,00 mm<br>THICKNESS                                                                   | AGT = 50%<br>AGT = 50%<br>C THRESHOLD<br>20%<br>X VALUE                                                      | TOF NODE<br>FLANK<br>TOF NODE<br>FLANK<br>O-DIAMETER         |
| 1605                            | 29.97 mm<br>GATE & START<br>SOLOO mm<br>GATE C START<br>SOLOO mm<br>PROBE ANGLE<br>OFF                                                                                              | GATE B WIDTH<br>20.00 mm<br>GATE C WIDTH<br>50.00 mm<br>THICKNESS<br>50.00 mm                                                       | AGT = 23%<br>B THRESHOLD<br>AGT = 50%<br>C THRESHOLD<br>20%<br>X VALUE<br>0.00 mm                            | TOF MODE<br>FLANK<br>TOF MODE<br>FLANK<br>O-DIAMETER<br>FLAT |
| TRIG<br>GAIN                    | 29.97 mm<br>GWE B START<br>S0.00 mm<br>GATE C START<br>S0.00 mm<br>PROBE ANGLE<br>OFF<br>GAN                                                                                        | GATE & WIDTH<br>20.00 mm<br>GATE C WIDTH<br>50.00 mm<br>THICKNESS<br>50.00 mm<br>REF GAN                                            | AGT = 25%<br>B THRESHOLD<br>AGT = 50%<br>C THRESHOLD<br>20%<br>X VALUE<br>0.00 mm<br>TRANSFER CORR           | TOF MODE<br>FLANK<br>TOF MODE<br>FLANK<br>O-DUAMETER<br>FLAT |
| TRUG<br>GAIN                    | 29.97 mm<br>GATE B STUAT<br>SOLOO mm<br>GATE C START<br>SOLOO mm<br>PROBE ANGLE<br>OFF<br>GAN<br>47.5 dB                                                                            | GATE & WIDTH<br>20.00 mm<br>GATE C WIDTH<br>50.00 mm<br>THICKNESS<br>50.00 mm<br>REF GAN<br>0.0 dB                                  | B THRESHOLD<br>AGT = 50%<br>C THRESHOLD<br>20%<br>X VALUE<br>0.00 mm<br>TRANSFER CORR<br>1.4 dS              | TOF MODE<br>FLANK<br>TOF MODE<br>FLANK<br>O-DIAMETER<br>FLAT |
| TRIG<br>GAIN<br>FLE             | 29.97 mm<br>GATE B START<br>50.00 mm<br>GATE C START<br>50.00 mm<br>PROBE ANGLE<br>OFF<br>GAN<br>47.6 dB<br>LAST DATASET L<br>DET AC                                                | GATE & WIDTH<br>20:00 mm<br>GATE C WIDTH<br>50:00 mm<br>THICKNESS<br>50:00 mm<br>REF GAN<br>0.0 d8<br>0ADED                         | AGT = 25%<br>B THRESHOLD<br>AGT = 50%<br>C THRESHOLD<br>20%<br>X VALUE<br>0.00 mm<br>TRANSFER CORR<br>1.4 d8 | TOF NODE<br>FLANK<br>TOF NODE<br>FLANK<br>O-DIAMETER<br>FLAT |
| TRIG<br>GAIN<br>FILE<br>49.000  | 29.57 mm<br>GATE B START<br>SOLOD mm<br>GATE C START<br>SOLOD mm<br>GATE C START<br>SOLOD mm<br>PROBE ANGLE<br>OFF<br>GAN<br>47.5 dB<br>LAST DATASET L<br>PROT A2<br>LAST DATASET L | GATE B WUDTH<br>20.00 mm<br>GATE C WUDTH<br>50.00 mm<br>THICKNESS<br>50.00 mm<br>REF GAN<br>0.0 d8<br>0A000                         | AGT = 22%<br>B THRESHOLD<br>AGT = 50%<br>C THRESHOLD<br>20%<br>X VALUE<br>0.00 mm<br>TRANSFER CORR<br>1.4 d8 | TOF NODE<br>FLANK<br>TOF NODE<br>FLANK<br>O-DUAMETER<br>FLAT |
| TROG<br>Sain<br>File<br>db Roff | 29.57 mm<br>GATE & START<br>50.00 mm<br>GATE C START<br>50.00 mm<br>PROBE ANGLE<br>OFF<br>GAN<br>47.5 d8<br>LAST DATASET L<br>PROT A2<br>MODE<br>OFF                                | GATE B WIDTH<br>20.00 mm<br>GATE C WIDTH<br>50.00 mm<br>THICKNESS<br>50.00 mm<br>SEF GAN<br>0.0 dB<br>CADED<br>REFERENCE<br>WY2 SEE | AGT = 23%<br>B THRESHOLD<br>AGT = 50%<br>C THRESHOLD<br>20%<br>X VALUE<br>0.00 mm<br>TRANSPER CORR<br>1.4 dS | TOF MODE<br>FLANK<br>TOF MODE<br>FLANK<br>O-DIAMETER<br>FLAT |

## 6.3 Сохранение заголовка протокола

| MEMO/HDR              |
|-----------------------|
| HEADER EDIT           |
| <new header=""></new> |
| MEMO EDIT             |
| <new neno=""></new>   |
| MEMO IN REPORT        |
| NO                    |
| HDR IN REPORT         |
| NO                    |

Хранить краткую информацию для заголовков протоколов испытаний можно в виде текстовых файлов. Содержание этих файлов будет располагаться в заголовке протоколов испытаний, если включена соответствующая функция. Каждый файл заголовка может содержать максимум 5 строк, состоящих из 31 символа каждая.

Файл заголовка хранится в подкаталоге заголовка **HEADER** текущего каталога на карте памяти SD.

## Создание нового файла заголовка

- Переключитесь на второй операционный уровень.

- В функциональной группе **FILES** выберите функцию редактирования заголовка **HEADER EDIT** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации и выберите опцию **<NEW FILE>** (<HOBЫЙ ФАЙЛ>) и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации, чтобы выбрать первый символ в названии файла.

- Используйте клавиши навигации, чтобы переключиться и выбрать следующий символ.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно ввода названия файла. Теперь можно ввести текст.

- Используйте клавиши навигации, чтобы ввести текст.

- В конце нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно ввода.

## Редактирование файла заголовка

Можно в любое время отредактировать файлы заголовков, сохраненные на карте памяти SD.

- Переключитесь на второй операционный уровень.

- В функциональной группе **FILES** выберите функцию редактирования заголовка **HEADER EDIT** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- При помощи клавиш навигации выберите название необходимого файла и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации, чтобы изменить текст.

- В конце нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно ввода.

| -    |  |
|------|--|
|      |  |
| 1-23 |  |
| ~ ~  |  |

#### Примечание

Для изменения файла заголовка можно использовать любой текстовый редактор, достаточно вставить карту памяти SD в устройство чтения SD-карт вашего компьютера или подключив USM Go к компьютеру с помощью кабеля USB (см. Раздел **USB-Интерфейс,** страница 8-3).

Пожалуйста, обратите внимание, что каждый файл заголовка может содержать максимум 5 строк, состоящих из 31 символа каждая.

# Прикрепление файла заголовка к протоколу испытаний

Можно прикрепить текстовый файл или файл заголовка к одному или нескольким протоколам испытаний. Для этого нужно выбрать файл заголовка и включить функцию HDR IN REPORT (заголовок в протоколе).

- Переключитесь на второй операционный уровень.

- В функциональной группе **FILES** выберите функцию **HEADER EDIT** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- При помощи клавиш навигации выберите название необходимого файла и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- После этого снова нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно редактирования текста.

- Переключитесь на функцию HDR IN REPOR и нажмите на функциональную клавишу для выбора пункта YES, чтобы активировать функцию.

При следующем сохранении протокола испытаний в его заголовок будет включена информация из выбранного файла заголовка.

| 14.02.2013<br>HEAD | {              | 15.525   | 58       |       | INSTRU     | MENT          | NR    | USMK      | 1009        | 0015   | 4        |       | V2.0 | 6 |
|--------------------|----------------|----------|----------|-------|------------|---------------|-------|-----------|-------------|--------|----------|-------|------|---|
|                    |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
|                    |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
|                    |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
|                    |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
|                    |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
|                    |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
|                    |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
| GAIN 0.2           | 2 <b>A</b> /A= | 8        | 0 %      | 09/=  |            | - 10          | 849   |           | 80 X        |        |          |       | - 1  | 6 |
| 47,6 dE            | 3 (94) =       | 42,1     | 8.m      | 84/-  |            | - 101         | 88    |           | 50 X        |        |          |       |      | 9 |
| × .                | <u>A4</u>      | w [      |          |       |            |               |       |           |             |        |          |       |      |   |
| RANGE              |                |          |          |       |            |               |       |           |             |        |          |       |      |   |
| 10                 | 0.00           | mm       | ,        |       | ,          | 11            |       |           |             |        |          | ,     |      |   |
| 10                 |                |          |          |       |            |               | -     |           |             |        |          |       | 1    |   |
| PROBE DE           | L MV           | -        |          |       |            |               |       |           |             |        |          |       |      |   |
| PRODE DE           | 0.000          |          |          |       |            | - 1           |       |           |             |        |          |       |      |   |
|                    |                | · #5     |          |       |            |               |       | · · · · p |             |        |          |       |      |   |
| VELOCITY           |                | -        |          |       |            |               |       |           |             |        |          |       |      |   |
| VCBOCIIII          |                | -        |          |       |            | - 1           |       | - r       |             |        |          |       |      |   |
| CTEE               |                | 105      |          |       |            |               |       | - P       |             | п.     |          |       |      |   |
| DEDLAND            | L SIN          | 1201     |          |       |            | - 4           |       | -         |             |        |          | 4     |      |   |
| DISPLATO           | CLAT<br>0.000  |          |          |       | _          |               |       | - 1       |             |        |          |       |      | ì |
|                    | 0000           | us:      | <u> </u> |       |            | - 1           |       |           | . 1         |        | <u> </u> | 1     |      | I |
| PANOS              | 018            | 000      | DSC1     | CALCO | 10.0       | 200           | 1 H H | LTCC A    |             | 0.000  | A        | 01    | TC P | Ш |
| IN NO.             | PUL            | 200      | NOU      | CV    | Param      | eter          | Tab   | le<br>le  |             | GALC   | -        | Gr    | HC D | - |
| RANGE              | F              | RANGE    |          |       | ROBE D     | ELAY          |       | VELOC     | ΠY          |        | DISP     | LAY D | ELAY |   |
|                    |                | 100.00   | mm       | (     | 1.000 µs   | 8             | _     | 5800      | m/s         |        | 0.00     | 00 µs |      | _ |
| PULSER             |                | VOUAGE   |          |       |            |               |       | DAMP      | NG          |        |          |       |      |   |
| RECV               | F              | FREDU ET | VOV.     | 5     | FCTIFY     |               |       | DUM       | JHPI        |        | RE       | CT .  |      |   |
|                    |                | 1 - 5 MH | z        | Þ     | IEG HWL    | FWW.          | ΙË    | ON        |             |        | 0%       |       |      | _ |
| PRF                |                | RF MOD   | JE       | F     | RF WUL     | JE            |       |           |             |        |          |       |      |   |
| GATES              | - í            | SATE A 1 | STAR     | T é   | ATE A V    | MOTH          |       | A THR     | ICHES       | D      | TOF      | MODE  | E    |   |
|                    |                | 29.97 m  | m        | 1     | 7.90 m     | m             | _     | AGT :     | 23%         |        | FLA      | NK    |      | _ |
|                    |                | SATE B S | TAR      | T 🤅   | ATE B V    | MIDTH         |       | BITHR     | SHOL        | D      | TOF      | MOOR  | E    |   |
|                    |                | SOLOO M  | TAR      | T é   | ALE C V    | m<br>Militite | 4     | ADI :     | 50%         | D      | TOP      | MODE  | F    |   |
|                    |                | 50.00 m  | m        | -     | 0.00 m     | m             |       | 20%       | - the first |        | FLA      | NK    |      |   |
| TRIG               |                | PROBE A  | NGU      | E 1   | HICKNE     | SS            |       | X VALL    | E           |        | 0-0      | IMMET | TER  |   |
| GAN                | -              | GAN      | -        | 6     | 5000       | mm            | -     | TRANS     | 2000        | 990    | PLA      |       |      |   |
| 0.00               |                | 47.6 dB  |          |       | 0.0 d8     |               |       | 14 d      | B           | Junit. |          |       |      |   |
| FILE               |                | AST DA   | WAS      | TLOA  | DED        |               |       |           |             |        |          |       |      |   |
| 48.000             |                | ANDE AS  | -        |       | record     | ne            | -     | -         | -           | -      | -        | -     | -    | - |
| an an              |                | ALC: NO  |          |       | NO. OFFICE | 1.1           | -     |           |             |        |          |       |      | - |

# 6.4 Просмотр и хранение параметров

- В функциональной группе **FILES** выберите функцию настройки параметров **PARAMETERS** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). На экране отобразится первая страница списка параметров и настроек.

- Используйте клавиши навигации для просмотра других страниц в списке параметров.

- Одновременно нажмите на две функциональные клавиши, чтобы сохранить список параметров.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть список параметров.

Просматривать сохраненный список параметров на экране USM Go нельзя.

Можно просмотреть полный список параметров и настроек на Для просмотра файлов в формате PDF можно использовать экране USM Go и сохранить их в файле. Список параметров хранится в виде файла PDF в текущем каталоге на карте памяти SD.

# 6.5 Видео

Можно записывать и воспроизводить видео. Во время записи все движения на экране фиксируются с частотой 10 или 50 кадров в секунду. Можно воспроизводить записанные видео на экране USM Go.

### Запись видео

VIDEO SOURCE/DEST MEMORY FILENAME UI D MODE REPLAY ENTER

Можно сохранить видео на внутренней памяти прибора или на карте памяти SD. Скорость передачи кадров составляет 50 кадров в секунду при использовании внутренней памяти и 10 кадров в секунду - при использовании SD-карты.

Во время записи доступны различные функции управления и вариантов работы стробов. Помимо этого, можно установить несколько флажков, чтобы в последствии быстрее найти отдельные последовательности.



#### Примечание

Убедитесь, что на используемой SD карте имеется достаточно свободного места. Объема внутренней памяти хватит примерно на 8 минут записи (24 000 отдельных кадров).

- Переключитесь на второй операционный уровень.

- В функциональной группе FILES выберите функцию SOURCE/DEST.

- Для выбора каталога памяти нажмите на нужные функциональные клавиши.

 Переключитесь на функцию FILENAME и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).
 Используйте клавиши навигации и выберите опцию

<NEW FILE> (<HOBЫЙ ФАЙЛ>) и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации, чтобы выбрать первый символ в Далее будет автоматический переход на первый операционный названии файла. уровень с файлами А-развертки.

- Используйте клавиши навигации, чтобы переключиться и выбрать следующий символ.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно ввода названия файла.

- Переключитесь на функцию **МОDE** (режим) и при помощи функциональных клавиш выберите режим **RECORD**.

- Переключитесь на функцию **ENTER** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Если появилось сообщение FILE EXISTS. DOUBLE KEY PRESS TO OVERWRITE FILE. (Файл уже существует. Нажмите две клавиши, чтобы перезаписать), одновременно нажмите на две функциональные клавиши, чтобы перезаписать существующий файл.



Рядом с А-разверткой в функциональной группе регистрации **RECORD** отображаются функции управления, а настройки каждого строба отображаются в соответствующей функциональной группе стробов.

Информация о записи отображается в верхней части файла Аразвертки:

• ТІМЕ = текущее время записи,

• **FRAM** = количество отдельных кадров.

- В функциональной группе регистрации **RECORD** выберите функцию **Воспроизведение видео RECORD** и нажмите функциональную клавишу. Начнется запись видео.

- Переключитесь на функцию **FLAG** и нажмите на функциональную клавишу, чтобы установить флажок. Название флажка соответствует номеру отдельного кадра в тот момент, когда была нажата функциональная клавиша.

- Переключитесь на одну из функциональных групп стробов и управляйте ими в обычном порядке.

- Можно изменять усиление в обычном порядке.

- В функциональной группе регистрации **RECORD** выберите функцию **RECORD** и нажмите функциональную клавишу, чтобы остановить запись.

Можно просматривать видео, которые хранятся на внутренней р памяти устройства или на карте памяти SD, прямо с экрана USM Go.

- В функциональной группе **RECORD** выберите функцию **STOP** памяти устройства или на карте памяти SD, прямо с экрана USM Go. (остановка) и нажмите функциональную клавишу. Запись остановлена и на экране отображается обычный вид первого Также на компакт-диске, который прилагается к USM Go, имеется операционного уровня с файлами A-развертки и функциональными небольшая программа для ПК, с помощью которой можно группами.

| NTO. |     |       |       |        |
|------|-----|-------|-------|--------|
| па   |     | FILEN | AME   |        |
|      |     | UID   |       |        |
|      |     |       |       |        |
| ba-  |     | MODE  | E     |        |
|      |     |       |       | REPLAY |
|      |     |       |       |        |
|      |     | ENTE  | R     |        |
| ию   |     |       |       |        |
| 1ТЬ  |     |       |       |        |
|      | l   |       |       |        |
|      | Мо  | жно   | пμ    | осма   |
| ЭP   | паг | ияти  | 1 yci | гройст |
| IСЬ  |     |       | ,     | •      |
|      | Та  | кже   | на    | комп   |
| л U  |     |       |       |        |

SOURCE/DEST

MEMORY

- Переключитесь на второй операционный уровень.

Далее будет выполнен автоматический переход на первый операционный уровень с файлами А-развертки. Воспроизведение функциональной группе FILES функцию начнется автоматически. выберите

- Для выбора каталога памяти нажмите на нужные функциональные клавиши.
- Переключитесь на функцию FILENAME (название файла) и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).
- Используйте клавиши навигации, чтобы выбрать название нужного файла набора данных.
- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы подтвердить выбор.
- Переключитесь на функцию **MODE** и при помощи функциональных клавиш выберите режим воспроизведения **REPLAY**.
- Переключитесь на функцию ENTER и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).



Информация о записи отображается в верхней части файла Аразвертки:

- ТІМЕ = текущее время записи,
- FRAM = количество отдельных кадров.



В

SOURCE/DEST.

- В функциональной группе воспроизведения **REPLAY** выберите **6.6 Документирование при помощи UltraMATE** функцию проигрывания **PLAY** и нажмите функциональную клавишу. Начнется воспроизведение. Специальная прикладная программа UltraMATE, предоставленная GE

- Переключитесь на функцию настройки скорости **SPEED** и при USM Go, добавлять настройки в формате ASCII или отображать помощи функциональных клавиш измените скорость содержание протокола испытаний.

- В функциональной группе воспроизведения **REPLAY** выберите функцию проигрывания **PLAY** и нажмите функциональную клавишу, чтобы прервать запись. Все данные могут обрабатываться при помощи обычных программ обработки или верстки текста. Дополнительная информация о том, как пользоваться данной

- Переключитесь на функциональную группу **CONTROL** и выберите программой, представлена в подробном руководстве по функцию **FLAG**.

- Чтобы переключаться между флажками, установленными в процессе записи, используйте функциональные клавиши.

- Выберите функцию **ТІМЕ** и используйте функциональные клавиши, чтобы выбрать и отобразить определенный момент в записи видео.

- Выберите функцию **FRAME** и используйте функциональные клавиши, чтобы выбрать и отобразить определенный кадр в записи видео.

- В функции воспроизведение **REPLAY** выберите функцию остановки **STOP** и нажмите функциональную клавишу, чтобы остановить воспроизведение.



#### Примечание

Должна быть доступна версия Ultra-MATE 2.60 или более поздняя.

# 6.7 Регистрация данных (опция)

Функции дополнительной опции регистрации данных доступны в функциональной группе регистрации данных **DR** на втором операционном уровне.

| DR SETUP            | DR NAV                 |             |      |
|---------------------|------------------------|-------------|------|
| FILENAME            | TOP                    |             |      |
| <new file=""></new> | 1A                     |             |      |
| CREATE              | BOTTOM<br>1A           |             |      |
| DR VIEW<br>OFF      | ADV DIRECTION<br>RIGHT |             |      |
| DR THICKNESS<br>SBA |                        |             |      |
| dB REF CONFIG1      | CONFIG2 CONF           | IG3 CONFIG4 | DR 🜗 |

Регистрация данных позволяет управлять тестовыми задачами по измерению толщины стенок, а также хранить и сохранять данные в структурированном виде вместе с или без А-развертки.

Можно хранить данные в таблице и, таким образом, структурировать их в соответствии с задачами испытаний. Таблица состоит из строк и столбцов.

Так, например, в строках можно указывать места испытаний, а в столбцах - отдельные контрольные точки. В таблице, которая состоит из 9 строк и 4 столбцов, будут храниться результаты мест испытаний, каждый в отдельной строке. Можно хранить данные с одной, двух или трех контрольных точек каждого места испытаний. Если контрольная точка не была обработана, то соответствующая ячейка в таблице будет пустой.

|   | 1     | 2     | 3     | 4     |
|---|-------|-------|-------|-------|
| Α | 42.81 | EMPTY | EMPTY | EMPTY |
| В | EMPTY | EMPTY | EMPTY | EMPTY |
| С | EMPTY | EMPTY | EMPTY | EMPTY |
| D | EMPTY | EMPTY | EMPTY | EMPTY |
| Ε | EMPTY | EMPTY | EMPTY | EMPTY |
| F | EMPTY | EMPTY | EMPTY | EMPTY |
| G | EMPTY | EMPTY | EMPTY | EMPTY |
| н | EMPTY | EMPTY | EMPTY | EMPTY |
| I | EMPTY | EMPTY | EMPTY | EMPTY |

Начните с создания пустой таблицы в файле регистрации данных. Данную таблицу можно затем выводить на экран и вносить в нее данные измерений толщины.

## Создание нового файла Регистрации данных

| DR SETUP            | DR NAV                 |  |
|---------------------|------------------------|--|
| FILENAME            | TOP                    |  |
| <new file=""></new> | 1A                     |  |
| CREATE              | BOTTOM<br>1A           |  |
| DR VIEW<br>OFF      | ADV DIRECTION<br>RIGHT |  |
| DR THICKNESS<br>SBA |                        |  |



### ВНИМАНИЕ

После создания файла уже нельзя изменить количество строк или столбцов, заданное при помощи функции определения последних строк/столбцов таблицы **ВОТТОМ.** 

- Переключитесь на второй операционный уровень.

- В функциональной группе регистрации данных **DR** выберите функцию **FILENAME** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации и выберите опцию **<NEW FILE>** (<HOBЫЙ ФАЙЛ>) и нажмите джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+).

Перед тем как сохранить данные в таблицу, необходимо создать - Используйте клавиши навигации, чтобы выбрать первый символ в файл Регистрации данных. названии файла.

В процессе необходимо определить следующие параметры: • размер (количество строк и столбцов),

• автозаполнение данных в положительном направлении (в строках и столбцах) и

• требуемый метод измерений для определения значения толщины стенки (измерение пути звука в стробе или между стробами).

- Используйте клавиши навигации, чтобы переключиться и выбрать следующий символ.

- Нажмите на джойстик (USM Go) или на центральную клавишу - Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+) чтобы закрыть окно ввода названия клавишной панели (USM Go+), чтобы закрыть окно выбора. файла.

- Переключитесь на функцию прямого заполнения таблицы - Переключитесь на функцию определения первых строк/столбцов **ADV DIRECTION** и нажмите на функциональные клавиши для выбора таблицы **TOP** и нажмите на джойстик (USM Go) или на центральную автозаполнения таблицы в прямом направлении. клавишу клавишной панели (USM Go+).

- переключитесь на функцию регистрации данных толщины - Выберите координаты для первой ячейки в верхнем левом углу **DR THICKNESS** и нажмите на функциональные клавиши для выбора таблицы. Выбор опции **1A** означает, что названия столбцов метода измерений (например, **SA** = измерение пути звука в начинаются с **1**, а названия строк - с **A**. стробе A).

- Нажмите на джойстик (USM Go) или на центральную клавишу - Переключитесь на функцию создания таблицы **CREATE** и нажмите клавишной панели (USM Go+), чтобы закрыть окно выбора. на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). Будет создан новый файл регистрации данных.

- Переключитесь на функцию **ВОТТОМ** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Выберите координаты для последней ячейки в нижнем правом углу таблицы. Выбор опции **4H** означает, что будет создано **4** столбца и **8** строк (от **A** до **H**).

После создания файла регистрации данных будет указано количество строк и столбцов.

| DR NAV        |  |
|---------------|--|
| NUM OF COLS   |  |
| 4             |  |
| NUM OF ROWS   |  |
| 8             |  |
| ADV DIRECTION |  |
| RIGHT         |  |
|               |  |

| DR SETUP            |     |
|---------------------|-----|
| FILENAME            |     |
| <new file=""></new> |     |
| CDEATE              |     |
| CREATE              |     |
|                     |     |
| DR VIEW             |     |
|                     | OFF |
|                     |     |
| DR THICKNESS        |     |
|                     | SBA |
|                     |     |

Можно активировать каждый из созданных файлов регистрации данных и использовать их для хранения данных.

- Переключитесь на второй операционный уровень.

Активирование файла регистрации данных

- В функциональной группе регистрации данных **DR** выберите функцию **FILENAME** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации, чтобы выбрать название нужного файла регистрации данных.

- Нажмите на джойстик (USM Go) или на центральную клавишу Сохранение данных в таблице клавишной панели (USM Go+), чтобы закрыть окно выбора названия файла.

- Переключитесь на первый операционный уровень. Отобразится Аразвертка.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

А-развертка отображается в уменьшенном режиме, а справа можно сохранить данные в таблицу.

| GAI    | N   | 0.2   | A¢ | ф=   |    | 82   | %  | DA/= |       | an 959= | 82 %  | 0     |       |
|--------|-----|-------|----|------|----|------|----|------|-------|---------|-------|-------|-------|
|        | 47. | 6 dB  | SI | A/=  | 42 | . 82 | m  | RA/= |       | nn 948= | 53 X  |       |       |
|        |     |       |    | • :  | ٠  |      |    | :    | KTB . |         |       |       |       |
| •      |     |       |    | 1    |    | ÷    | ·  | • 🗄  |       | 1       | 2     | 3     | 4     |
|        |     | -     | ,  |      |    | ,    | ,  | •    | Α     | 42.82   | EMPTY | EMPTY | EMPTY |
|        |     | -     |    | 1    | ·  |      |    | •    | В     | EMPTY   | EMPTY | EMPTY | EMPTY |
|        | ,   |       | ,  | ÷    | ,  |      | ,  |      | С     | EMPTY   | EMPTY | EMPTY | EMPTY |
| [      |     |       |    |      |    |      |    |      | D     | EMPTY   | EMPTY | EMPTY | EMPTY |
|        | ,   | -     |    |      |    | ,    | ,  |      | Е     | EMPTY   | EMPTY | EMPTY | EMPTY |
|        |     |       |    | ÷.   |    |      |    |      | F     | EMPTY   | EMPTY | EMPTY | EMPTY |
|        |     |       | ,  |      | Ť. |      |    | 11   | G     | EMPTY   | EMPTY | EMPTY | EMPTY |
|        |     |       |    |      |    |      |    |      | н     | EMPTY   | EMPTY | EMPTY | EMPTY |
| 99. ji | 0   | 20 30 |    | a, s | 1  | b    | 18 | dui. | 'n    |         |       |       |       |

При отображении таблицы на экране устройства, можно сохранить данные и соответствующие А-развертки в отдельных ячейках.



#### Примечание

Когда отображается таблица, большинство функций Аразвертки не могут использоваться (например, настройки стробов). Можно только изменить усиление.

находится таблица выбранного файла регистрации данных. Теперь - Соедините датчик с первой точкой измерения. В выбранной ячейке таблицы немедленно появятся данные измерений.

- Используйте клавиши навигации, чтобы выбрать следующую ячейку.

- Нажмите на нижнюю функциональную клавишу, чтобы сохранить указанные данные вместе с А-разверткой. После сохранения автоматически выбирается следующая ячейка.

- Нажмите на нижнюю функциональную клавишу, чтобы сохранить только указанные данные без А-развертки.

Если А-развертка сохранена вместе с данными, в верхнем левом углу ячейки отобразится соответствующая отметка.

| GA  | IN | 1   | 0.2 | AX# | }=   |     | 82 | %    | D9/=   |     | nn AKA= | 82 %  | 0     |       |
|-----|----|-----|-----|-----|------|-----|----|------|--------|-----|---------|-------|-------|-------|
|     | 47 | .6  | dB  | SA) | '=   | 42. | 82 | m    | RA/=   |     | nn AKB= | 53 X  |       |       |
| E   |    |     |     |     | -    | ٠   |    |      | :      | KTB |         |       |       |       |
|     | ŀ  | 4   | 4   | 1   | -    | 4   | ŀ  | ÷    | •      |     | 1       | 2     | 3     | 4     |
|     | ,  | ,   | ,   |     | 1    | ,   |    |      | •      | Α   | 42.82   | 42.82 | EMPTY | EMPTY |
|     |    |     |     |     | -    | ·   |    |      | •      | В   | EMPTY   | EMPTY | EMPTY | EMPTY |
|     |    |     | -   |     | -    | ,   | ,  |      | •      | С   | EMPTY   | EMPTY | EMPTY | EMPTY |
|     |    |     |     |     |      |     |    |      |        | D   | EMPTY   | EMPTY | EMPTY | EMPTY |
|     | ,  | ,   | -   | -   | 4    | ŀ.  | ,  | ,    |        | Е   | EMPTY   | EMPTY | EMPTY | EMPTY |
|     |    |     |     |     |      | k.  |    |      |        | F   | EMPTY   | EMPTY | EMPTY | EMPTY |
|     |    |     |     |     | -    | t.  |    |      | 11     | G   | EMPTY   | EMPTY | EMPTY | EMPTY |
|     |    |     |     |     |      |     |    |      |        | Н   | EMPTY   | EMPTY | EMPTY | EMPTY |
| aq. | 10 | 120 | 30  | .P  | ្រឆា | W   | m  | . 18 | e unit |     |         |       |       |       |

- Для того, чтобы завершить сохранение данных, нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

Таблица исчезнет и снова отобразится стандартный вид экрана на первом операционном уровне.

### Удаление данных

Перезаписать данные нельзя. Если требуется изменить данные, необходимо удалить сохраненные данные, после чего можно сохранить новые в освободившейся ячейке.

Удаление затронет как данные в ячейке, так и соответствующую Аразвертку.

- Используйте клавиши навигации для выбора ячейки с сохраненными данными.

- Одновременно нажмите на две функциональные клавиши. Данные будут удалены и в ячейке снова появится обозначение **EMPTY** (пусто).

Теперь можно сохранить новые данные в этой ячейке.

## Предварительный просмотр А-развертки.

Если выбрана ячейка, в которой содержатся сохраненные данные с прикрепленной к ним А-разверткой, то развертка отображается рядом - Нажмите на джойстик (USM с таблицей. Развертка в режиме реального времени в настоящий клавишной панели (USM Go+). момент не отображается.

## Просмотр файлов регистрации данных

В любое время на экране USM Go можно просматривать сохраненные файлы регистрации данных вместе с А-разверткой или без нее.

- Переключитесь на второй операционный уровень.

- В функциональной группе регистрации данных **DR** выберите функцию **FILENAME** и нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+).

- Используйте клавиши навигации, чтобы выбрать название нужного файла регистрации данных.

- Нажмите на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+), чтобы закрыть окно выбора названия файла.

- Переключитесь на первый операционный уровень. Отобразится Аразвертка.

<sub>и</sub> - Нажмите на джойстик (USM Go) или на центральную клавишу <sub>й</sub> клавишной панели (USM Go+).

А-развертка отображается в уменьшенном режиме, а справа находится таблица выбранного файла регистрации данных.

| GAIN  |     | 0.2   | AK, | <b>₽=</b> |       | 82   | %   | DA/=  |     | nn AKA= | 82 X  | 0     |       |
|-------|-----|-------|-----|-----------|-------|------|-----|-------|-----|---------|-------|-------|-------|
| 4     | 7.6 | dB    | SA  | /=        | 42.   | . 82 | m   | RA/=  |     | nn AKB= | 53 X  |       |       |
|       |     |       |     |           | ٠     |      |     | :     | KTB |         |       |       |       |
| •     | 4   | .4    | •   | 1         | 4     | •    | ·   | 1 E - |     | 1       | 2     | 3     | 4     |
| -     |     |       |     |           |       |      |     | •     | Α   | 42.82   | 42.82 | EMPTY | EMPTY |
| •     |     |       |     |           |       |      |     | • ÷   | В   | EMPTY   | EMPTY | EMPTY | EMPTY |
|       |     |       |     | ÷         |       |      |     | •     | С   | EMPTY   | EMPTY | EMPTY | EMPTY |
|       |     |       |     |           |       |      |     |       | D   | EMPTY   | EMPTY | EMPTY | EMPTY |
| ,     | ,   | -     |     |           |       | ,    | ,   |       | Е   | EMPTY   | EMPTY | EMPTY | EMPTY |
|       |     |       |     | ł         |       |      |     |       | F   | EMPTY   | EMPTY | EMPTY | EMPTY |
|       |     |       |     |           | T     |      |     |       | G   | EMPTY   | EMPTY | EMPTY | EMPTY |
|       |     |       |     |           |       |      |     |       | Н   | EMPTY   | EMPTY | EMPTY | EMPTY |
| 00 J1 | 12  | 1  30 | J.  | 5         | 1. 19 | b    | .18 | hill  |     |         |       |       |       |

### Выключение / включение таблицы



## Выключение таблицы

- Переключитесь на второй операционный уровень.

- В функциональной группе регистрации данных **DR** выберите функцию просмотр зарегистрированных данных **DR VIEW.** 

- Нажмите на соответствующую функциональную клавишу для перевода функции в выключенное состояние **OFF**, чтобы отключить функцию. Таким образом, функции таблицы будут отключены.

### Включение таблицы

- Переключитесь на второй операционный уровень.

Стандартно функции таблицы автоматически включаются при создании нового файла регистрации данных или при выборе - В функциональной группе регистрации данных DR выберите сохраненного файла регистрации данных для редактирования или функцию просмотр зарегистрированных данных DR VIEW.

Когда функции таблицы включены, таблица может быть выведена на экран на первом операционном уровне, нажатием на джойстик (USM Go) или на центральную клавишу клавишной панели (USM Go+). Во время просмотра таблицы нельзя переключиться на режим просмотра увеличенной А-развертки. Для того, чтобы переключится на режим просмотра увеличенной А-развертки, сначала следует выключить функции таблицы.

- Нажмите на соответствующую функциональную клавишу **ON** (вкл), а на чтобы включить функцию. Таким образом, функции таблицы будут включены.

# Техническое обслуживание и уход 7

# 7.1 Уход за измерительным прибором

Для очистки измерительного прибора и принадлежностей используйте влажную ветошь. Производитель рекомендует применять для чистки только следующие средства:

- воду;
- нейтральный бытовой очиститель; или
- спирт (не использовать метиловый спирт!).



#### ВНИМАНИЕ

Запрещено использовать метиловый спирт, а также любые растворители или очистители, способные повредить защитное лакокрасочное покрытие. При использовании вышеупомянутых средств детали из пластмассы могут быть повреждены или стать хрупкими.

# 7.2 Уход за батареей

## Уход за батареей

Емкость и срок службы аккумуляторных батарей во многом определяется правильным обращением с ними. По этой причине следует соблюдать приведенные ниже рекомендации.

Аккумуляторные батареи следует полностью зарядить:

- перед первым включением прибора;
- после хранения в течение 3 или более месяцев;
- после частичного разряда батареи при частом использовании.

# Зарядка батарей

Возможна зарядка литий-ионной батареи без удаления ее из измерительного прибора, либо с помощью рекомендованного внешнего зарядного устройства. В этой связи следует соблюдать инструкции по эксплуатации производителя зарядного устройства.

Детальная информация по обращению с аккумуляторными батареями, процессу зарядки и назначению сигналов светодиодов и индикаторов питания приведена в главе «Работа с использованием батарей», страница 3-4.

# $\triangle$

#### ВНИМАНИЕ

Следует использовать только рекомендованные производителем аккумуляторные батареи и соответствующее зарядное устройство. Любое неосторожное обращение с батареями и зарядным устройством влечет за собой риск взрыва.

# 7.3 Техническое обслуживание

Прибор USM Go практически не требует технического обслуживания.

# <u>∧</u>

#### ВНИМАНИЕ

Ремонт прибора, вне зависимости от сложности, могут выполнять только специалисты сервисного обслуживания GE Sensing & Inspection Technologies (компания, занимающаяся приборами и оборудованием для неразрушающего контроля).

# 7.4 Обновление программного обеспечения прибора

Последние обновления программного обеспечения для USM Go можно установить самостоятельно. Посмотрите версию установленного на приборе программного обеспечения на втором операционном уровне.

- Перейдите к функциональной группе CONFIG2 и далее выберите функцию ABOUT.
- Нажмите на джойстик (USM Go) или центральную клавишу клавишной панели (USM Go+) – кратковременное нажатие – для отображения экрана начала работы, содержащего информацию о приборе и установленном программном обеспечении.
- В строке **MAIN CODE** отображается номер версии и дата установки программного обеспечения.

### Загрузка файлов с обновлением

Последнюю версию программного обеспечения для вашего измерительного прибора можно загрузить с интернет-сайта GE Inspection Technologies через любой доступный веб-браузер.

После загрузки файл обновления необходимо скопировать в корневую папку карты памяти SD.

- Запустите браузер и введите адрес www.geinspectiontechnologies.com.
- После загрузки главной страницы по умолчанию можно изменить язык с помощью опции в верхней части экрана, если необходимо.
- Нажмите на иконку Download Center, расположенную слева.
  Откроется страница.
- Выберите следующие элементы в списках:
  в списке Business type: выбрать элемент Inspection Technologies;
  в списке Product category: выбрать элемент Ultrasound;
  в списке Product family: выбрать Portable flaw detectors;
  в списке Download type: выбрать элемент Software.
- Щелкните по кнопке Search. На экран будут выведены результаты запущенной операции поиска.
- В колонке Title щелкните по элементу USM Go/DMS Go Software Update.

- Прочитайте оферту по условиям использования программного обеспечения на экране и щелкните I АССЕРТ для подтверждения своего согласия на данные условия. На экране откроется окно Registration Form.
- Заполните регистрационную информацию в данном окне и по завершении нажмите SUBMIT. Откроется окно для загрузки обновления.
- В колонке **Download** выберите пункт **Download Update**.
- Укажите расположение для сохранения файла на карте памяти и нажмите Save.
- Распакуйте загруженный архив (.zip) и сохраните файл обновления (.sdu) в выбранное вами место.
- Скопируйте файл обновления (.sdu) в корневой каталог карты памяти SD.

## Установка обновления



#### Примечание

В корневой каталог карты памяти SD можно поместить только один установочный файл с расширением **.sdu**. Если в корневом каталоге находится несколько файлов обновления, процесс установки прерывается и отображается сообщение об ошибке.

Для установки нового программного обеспечения необходимо совершить следующие операции:

- проверить, имеет ли файл расширение .sdu. Если необходимое расширение отсутствует, файл несовместим с USM Go и его нельзя использовать.
- Полностью выключить питание USM Go.
- Вставить карту памяти SD с файлом обновления в USM Go (см. главу 3.4 «Установка карты памяти SD», страница 3-10).

 Нажмите внутренний край клавиши усиления (1), внутренний край функциональной клавиши (2) и клавишу питания (3), удерживайте все три клавиши в нажатом состоянии, пока не включится экран монитора и не появится сообщение FLASH UPGRADE MODE.

После этого будет запущен процесс установки. Поочередно будут отображаться следующие сообщения:

#### LOADING FILE

#### **VERIFYING FILE**

### PROGRAMMING FLASH

Прибор автоматически выключится по окончании установки. После этого прибор можно включить и пользоваться им с новой версией установленного программного обеспечения.



#### Примечание

Чтобы сбросить прибор на заводские настройки, см. раздел «Заводская установка по умолчанию (сброс)», страница 3-12.



# Интерфейсы подключения и периферийные устройства 8

# 8.1 Интерфейсы подключения

## Краткий обзор

Интерфейсы для подключения внешних устройств расположены под водонепроницаемой крышкой в верхней части прибора.

- Нажмите защелку откидной крышки (1) в направлении стрелки, чтобы открыть ее.
- Закройте крышку и убедитесь, что она плотно зафиксирована.
  При необходимости надавите на защелку до упора в направлении, противоположном стрелке, чтобы герметично закрыть крышку.

Под крышкой располагаются следующие элементы:

- интерфейс USB (2);
- слот для карт памяти SD (3);
- служебный интерфейс (4).





# Интерфейс USB

Интерфейс USB выполнен в виде разъема micro USB и используется для обмена данными с ПК.

При подключении прибора к компьютеру с помощью стандартного кабеля USB, карта памяти SD прибора добавляется в список активных дисков на ПК.

После этого возможно выполнять все стандартные файловые операции на карте памяти SD, например, копирование и удаление файлов.

Подробную информацию по обращению с картой памяти SD см. в главе 3.4 «**Установка карты памяти SD**», страница 3-10.



#### Примечание

Если прибор подключен к ПК через интерфейс USB, он работает в режиме внешнего накопителя. В это время прибор не может функционировать по назначению. После отсоединения кабеля USB нормальный режим работы восстанавливается.

## Служебный интерфейс (Mini RS232-C)

Служебный интерфейс предназначен для вывода аварийных сигналов и для выполнения обслуживания в рамках поддержки клиента со стороны GE Sensing & Inspection Technologies.

#### Назначение контактов соединительного кабеля

| Контакт № | Цвет провода | Сигнал                       |
|-----------|--------------|------------------------------|
| 1         | Коричневый   | +5 B                         |
| 2         | Красный      | SAP                          |
| 3         | Оранжевый    | Аварийный сигнал             |
| 4         | Желтый       | RS232 (для подключения к ПК) |
| 5         | Зеленый      | RS232 (передача)             |
| 6         | Синий        | RS232 (прием)                |
| 7         | Фиолетовый   | GND (земля)                  |

Аварийный сигнал снимается с контактов 3 и 7.

# 8.2 Периферийные устройства

USM Go не предусматривает прямое подключение периферийных устройств, например, принтеров или мониторов.

Более подробную информацию по печати данных с прибора см. в разделе **«Печать отчетов об измерениях»**, страница 6-6.

# Приложение 9

# 9.1 Расположение функций в группах



#### Примечание

Некоторые функции доступны, только если соответствующие опции активированы путем ввода лицензионного кода.

| Функция      | Функциональная группа | Операционный уровень | Описание                                                                             | См. страницу |
|--------------|-----------------------|----------------------|--------------------------------------------------------------------------------------|--------------|
| A INDICATION | AWS D1.1              | 1-ый                 |                                                                                      | 5-41         |
| ASCAN FILL   | CONFIG2               | 2-ой                 | Выбор режима отображения эхо-сигналов<br>(детектирование с заливкой или стандартное) | 5-71         |
| A-START      | AUTOCAL               | 1-ый                 | Начальная точка строба А                                                             | 5-29         |
| A-START      | DGS                   | 1-ый                 | Начальная точка строба А                                                             | 5-119        |
| A-START      | GATE A                | 1-ый                 | Начальная точка строба А                                                             | 5-22         |
| A-START      | CNDAC                 | 1-ый                 | Начальная точка строба А                                                             | 5-109        |
| A-START      | DAC/TCG               | 1-ый                 | Начальная точка строба А                                                             | 5-91         |
| A-START      | JISDAC                | 1-ый                 | Начальная точка строба А                                                             | 5-102        |
| A-SCAN COLOR | CONFIG1               | 2-ой                 | Выбор цвета для изображения А-развертки                                              | 4-17         |
| A-WIDTH      | GATE A                | 1-ый                 | Ширина строба А                                                                      | 5-22         |
| A-THRESHOLD  | GATE A                | 1-ый                 | Порог чувствительности строба А                                                      | 5-22         |
| AGT          | EVAL                  | 2-ой                 |                                                                                      | 5-28         |
| ACTION       | FILES                 | 2-ой                 | Выбор операции обработки файлов: хранение, восстановление из хранилища или удаление  | 6-2          |
| Функция            | Функциональная группа | Операционный уровень | Описание                                                                                                    | См. страницу |
|--------------------|-----------------------|----------------------|-------------------------------------------------------------------------------------------------------------|--------------|
| OUTPUT SELECT      | CONFIG2               | 2-ой                 |                                                                                                             | 5-77         |
| RECORD             | dB REF                | 2-ой                 | Запись опорного эхо-сигнала для<br>дифференциального измерения амплитуды<br>звука                           | 5-38         |
| FINISH             | CNDAC                 | 1-ый                 | Окончание записи реперных точек (точек кривой) для функции ДАК (дистанционно-<br>амплитудная корректировка) | 5-109        |
| FINISH             | DAC/TCG               | 1-ый                 | Окончание записи реперных точек (точек кривой) для функции ДАК (дистанционно-<br>амплитудная корректировка) | 5-91         |
| FINISH             | JISDAC                | 1-ый                 | Окончание записи реперных точек (точек кривой) для функции ДАК (дистанционно-<br>амплитудная корректировка) | 5-102        |
| RECORD             | AUTOCAL               | 1-ый                 | Запуск полуавтоматической функции калибровки                                                                | 5-29         |
| RECORD             | CNDAC                 | 1-ый                 | Запись реперных точек (точек кривой) для функции ДАК                                                        | 5-109        |
| RECORD             | DAC/TCG               | 1-ый                 | Запись реперных точек (точек кривой) для функции ДАК                                                        | 5-91         |
| RECORD             | JISDAC                | 1-ый                 | Запись реперных точек (точек кривой) для функции ДАК                                                        | 5-102        |
| ENTER              | FILES                 | 2-ой                 | Выполнение режима обработки файлов, выбранного через функцию ACTION                                         | 6-2          |
| AUTO80             | CNDAC                 | 1-ый                 |                                                                                                             | 5-109        |
| AUTO80             | DAC/TCG               | 1-ый                 |                                                                                                             | 5-91         |
| AUTO80             | JISDAC                | 1-ый                 |                                                                                                             | 5-102        |
| <b>B</b> REFERENCE | AWS D1.1              | 1-ый                 |                                                                                                             | 5-41         |

| Функциональная группа | Операционный уровень                                                                                                                                                                                        | Описание                                                                                                                                                                                                                                                                                               | См. страницу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONFIG2               | 2-ой                                                                                                                                                                                                        | Базовое значение для начальной точки<br>строба В                                                                                                                                                                                                                                                       | 5-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GATE B                | 1-ый                                                                                                                                                                                                        | Начальная точка строба В                                                                                                                                                                                                                                                                               | 5-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GATE B                | 1-ый                                                                                                                                                                                                        | Начальная точка строба В                                                                                                                                                                                                                                                                               | 5-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GATE B                | 1-ый                                                                                                                                                                                                        | Начальная точка строба В                                                                                                                                                                                                                                                                               | 5-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CONFIG3               | 2-ой                                                                                                                                                                                                        | Уставка по усилению донного сигнала                                                                                                                                                                                                                                                                    | 5-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CONFIG3               | 2-ой                                                                                                                                                                                                        | Активация ослабления донного сигнала                                                                                                                                                                                                                                                                   | 5-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RANGE                 | 1-ый                                                                                                                                                                                                        | Измерительный диапазон (ширина<br>отображения)                                                                                                                                                                                                                                                         | 5-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RANGE                 | 1-ый                                                                                                                                                                                                        | Уставка по времени начала отображения                                                                                                                                                                                                                                                                  | 5-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CONFIG1               | 2-ой                                                                                                                                                                                                        | Подтверждение входа в режим функции CODE                                                                                                                                                                                                                                                               | 4-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EVAL                  | 2-ой                                                                                                                                                                                                        | Выбор режима оценки эхо-сигнала                                                                                                                                                                                                                                                                        | 5-73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DGS                   | 1-ый                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | 5-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DGS                   | 1-ый                                                                                                                                                                                                        | Диаметр опорного отражателя                                                                                                                                                                                                                                                                            | 5-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dB REF                | 1-ый                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | 5-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FILES                 | 2-ой                                                                                                                                                                                                        | Вставка изображения А-развертки в отчет об измерениях                                                                                                                                                                                                                                                  | 6-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONFIG1               | 2-ой                                                                                                                                                                                                        | Выбор координатной сетки для А-развертки                                                                                                                                                                                                                                                               | 4-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| dB REF                | 1-ый                                                                                                                                                                                                        | Активация сравнения эхо-сигналов                                                                                                                                                                                                                                                                       | 5-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EVAL                  | 2-ой                                                                                                                                                                                                        | Размер сегментов на линии измерения                                                                                                                                                                                                                                                                    | 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | Функциональная группа<br>CONFIG2<br>GATE B<br>GATE B<br>GATE B<br>CONFIG3<br>CONFIG3<br>CONFIG3<br>RANGE<br>RANGE<br>RANGE<br>CONFIG1<br>EVAL<br>DGS<br>DGS<br>dB REF<br>FILES<br>CONFIG1<br>dB REF<br>EVAL | Функциональная группаОперационный уровеньCONFIG22-ойGATE B1-ыйGATE B1-ыйGATE B1-ыйCONFIG32-ойCONFIG32-ойRANGE1-ыйRANGE1-ыйCONFIG12-ойDGS1-ыйDGS1-ыйFILES2-ойCONFIG12-ойEVAL2-ойDGS1-ыйFILES2-ойEVAL2-ойEVAL2-ойEVAL2-ойCONFIG12-ойEVAL2-ойCONFIG12-ойEVAL2-ойCONFIG12-ойCONFIG12-ойCONFIG12-ойEVAL2-ой | Функциональная группа Операционный уровень Описание   CONFIG2 2-ой Базовое значение для начальной точки строба В   GATE B 1-ый Начальная точка строба В   CONFIG3 2-ой Уставка по усилению донного сигнала   CONFIG3 2-ой Активация ослабления донного сигнала   RANGE 1-ый Измерительный диапазон (ширина отображения)   RANGE 1-ый Уставка по времени начала отображения   CONFIG1 2-ой Подтверждение входа в режим функции CODE   EVAL 2-ой Выбор режима оценки эхо-сигнала   DGS 1-ый Диаметр опорного отражателя   dB REF 1-ый Вибор координатной сетки для А-развертки в отчет об измерениях   CONFIG1 2-ой Выбор координатной сетки для А-развертки   B REF 1-ый Активация сравнения эхо-сигналов   FILES 2-ой Выбор координатной сетки для А-развертки   B REF |

| Функция       | Функциональная группа | Операционный уровень | Описание                                                                                                                   | См. страницу |
|---------------|-----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|
| GATE A LOGIC  | CONFIG2               | 2-ой                 | Схема оценки строба А                                                                                                      | 5-74         |
| GATE B LOGIC  | CONFIG2               | 2-ой                 | Схема оценки строба В                                                                                                      | 5-74         |
| BLOCK         | AUTOANG               | 1-ый                 |                                                                                                                            |              |
| C ATTENUATION | AWS D1.1              | 1-ый                 |                                                                                                                            | 5-41         |
| ТОР           | DR                    | 2-ой                 | Установка координат первой ячейки в матрице координатной сетки (регистратор данных)                                        | , 6-22       |
| CODE          | CONFIG1               | 2-ой                 | Ввод кода, включающего дополнительные функции и расширения                                                                 | , 4-12       |
| CTRL MODE     | CONFIG4               | 2-ой                 | Активация автоматического контроля усиления                                                                                | 5-84         |
| dB STEP       | CONFIG2               | 2-ой                 | Выбор шага усиления                                                                                                        | 5-6          |
| D D1.1 RATING | AWS D1.1              | 1-ый                 | Чувствительность к дефектам в дБ для<br>проведения оценки методом AWS<br>(американское общество специалистов по<br>сварке) | 5-41         |
| DAMPING       | PULSER                | 1-ый                 | Подавление колебаний контура преобразователя                                                                               | 5-14         |
| FILENAME      | FILES                 | 2-ой                 | Выбор или ввод имен файлов для отчетов                                                                                     | 6-2          |
| FILENAME      | DR                    | 2-ой                 | Выбор или ввод имен файлов для<br>регистратора данных                                                                      | 6-22         |
| DATE          | CONFIG1               | 2-ой                 | Установка даты                                                                                                             | 4-15         |
| DATE          | CONFIG3               | 2-ой                 | Ввод даты для ежегодной калибровки                                                                                         | 5-86         |
| DATE FORMAT   | CONFIG1               | 2-ой                 | Выбор формата даты                                                                                                         | 4-15         |
| DECIMAL       | CONFIG1               | 2-ой                 | Выбор десятичного разделителя                                                                                              |              |

| Функция        | Функциональная группа | Операционный уровень | Описание                                                                                                             | См. страницу |
|----------------|-----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|--------------|
| DIRECTORY      | FILES                 | 2-ой                 | Выбор каталога для операций с файлами                                                                                | 6-2          |
| DR VIEW        | DR                    | 2-ой                 | Отображение таблицы (регистратор данных)                                                                             | 6-22         |
| DR THICKNESS   | DR                    | 2-ой                 | Выбор метода измерения для хранения показаний в матрице координатной сетки (регистратор данных)                      | 6-22         |
| DIAMETER       | BLOCK                 | 1-ый                 |                                                                                                                      |              |
| ECHO MAX       | CONFIG1               | 2-ой                 | Активация функции Echo Max                                                                                           | 5-72         |
| UNITS          | CONFIG1               | 2-ой                 | Выбор единиц измерения                                                                                               | 4-14         |
| PROBE ANGLE    | TRIG                  | 1-ый                 | Ввод расчетного угла для проецируемого<br>расстояния (уменьшенного), при<br>использовании наклонных преобразователей | 5-46         |
| PROBE ANGLE    | EVAL                  | 2-ой                 |                                                                                                                      | 5-46         |
| ENVELOPE       | CONFIG3               | 2-ой                 | Активация функции огибающей кривой                                                                                   | 5-83         |
| ENVELOPE COLOR | CONFIG3               | 2-ой                 | Выбор цвета огибающей кривой                                                                                         | 5-83         |
| CREATE         | DR                    | 2-ой                 | Создание серии данных                                                                                                | 6-22         |
| COLOR          | CONFIG1               | 2-ой                 | Выбор цветовой схемы для экрана монитора                                                                             | 4-16         |
| COLOR LEG      | EVAL                  | 2-ой                 | Выбор цвета для первичного/вторичного отраженных сигналов                                                            | 5-49         |
| FREEZE MODE    | CONFIG3               | 2-ой                 | Настройка автоматического перехода монитора в режим фиксации (заморозки)                                             | 5-68         |
| USER GAIN STEP | CONFIG2               | 2-ой                 | Устанавливаемый пользователем шаг для<br>изменений чувствительности                                                  | 5-6          |
| FREQUENCY      | RECEIVER              | 1-ый                 | Частотный диапазон подключенного преобразователя                                                                     | 5-19         |

| Функция       | Функциональная группа | Операционный уровень | Описание См. стран                                                    | ницу |
|---------------|-----------------------|----------------------|-----------------------------------------------------------------------|------|
| FUNCTION 1    | CONFIG2               | 2-ой                 | Назначение функциональной клавиши 1<br>(внешний край клавиши)         | 5-8  |
| FUNCTION 2    | CONFIG2               | 2-ой                 | Назначение функциональной клавиши 2 (внешний край клавиши)            | 5-8  |
| ABOUT         | CONFIG2               | 2-ой                 | Экран начала работы с информации о версии<br>и типе установленного ПО | 5-52 |
| RECTIFY       | RECEIVER              | 1-ый                 | Выбор режима работы выпрямителя                                       | 5-19 |
| LARGE         | EVAL                  | 2-ой                 | Выбор показаний для увеличенного<br>отображения                       | 4-5  |
| BRIGHTNESS    | CONFIG1               | 2-ой                 | Настройка яркости дисплея                                             | 4-18 |
| PRF MODE      | CONFIG2               | 2-ой                 | Частота повторения импульсов                                          | 5-17 |
| PRF MODE      | PULSER                | 1-ый                 | Частота повторения импульсов                                          | 5-14 |
| ENERGY        | PULSER                | 1-ый                 | Интенсивность начального импульса                                     | 5-14 |
| JOY CONTROL   | CONFIG1               | 2-ой                 | Блокировка джойстика                                                  | 5-76 |
| CAL REMINDER  | CONFIG2               | 2-ой                 | Активация функции напоминания о калибровке                            | 5-86 |
| CAL REMINDER  | CONFIG3               | 2-ой                 | Активация функции напоминания о ежегодной калибровке                  | 5-86 |
| CAL RESET     | CONFIG2               | 2-ой                 | Сброс функции напоминания о калибровке                                | 5-86 |
| CAL RESET     | CONFIG3               | 2-ой                 | Сброс функции напоминания о ежегодной калибровке                      | 5-86 |
| S-REF1        | AUTOCAL               | 1-ый                 | Первый опорный сигнал для<br>полуавтоматической калибровки            | 5-29 |
| S-REF2        | AUTOCAL               | 1-ый                 | Второй опорный сигнал для полуавтоматической калибровки               | 5-29 |
| HDR IN REPORT | FILES                 | 2-ой                 | Вставка заголовка в отчет об измерениях                               | 6-15 |

| Функция                                                                    | Функциональная группа | Операционный уровень | Описание                                                                                     | См. страницу |
|----------------------------------------------------------------------------|-----------------------|----------------------|----------------------------------------------------------------------------------------------|--------------|
| HEADER EDIT                                                                | FILES                 | 2-ой                 | Редактирование данных для заголовка отчета<br>об измерениях                                  | 6-14         |
| воттом                                                                     | DR                    | 2-ой                 | Установка координат последней ячейки в<br>матрице координатной сетки (регистратор<br>данных) | 6-22         |
| DELETE REF                                                                 | dB REF                | 1-ый                 | Удаление сохраненного опорного эхо-сигнала<br>в дБ при дифференциальном измерении            | 5-38         |
| MAGNIFY GATE                                                               | EVAL                  | 2-ой                 | Выбор строба для увеличенного отображения                                                    | 5-65         |
| MAX AMP.%                                                                  | CONFIG4               | 2-ой                 |                                                                                              | 5-84         |
| MEMO IN REPORT                                                             | FILES                 | 2-ой                 | Вставка текста комментариев в отчет об<br>измерениях                                         | 6-12         |
| MEMO EDIT                                                                  | FILES                 | 2-ой                 | Редактирование текста комментариев для отчета об измерениях                                  | 6-11         |
| TOF MODE                                                                   | GATE A                | 1-ый                 | Выбор точки измерения по сигналу для строба А                                                | 5-22         |
| TOF MODE                                                                   | GATE B                | 1-ый                 | Выбор точки измерения по сигналу для<br>строба В                                             | 5-22         |
| READING 1<br>READING 2<br>READING 3<br>READING 4<br>READING 5<br>READING 6 | EVAL                  | 2-ой                 | Выбор показаний по шести полям полосы<br>измерений                                           | 4-5          |
| MIN AMP.%                                                                  | CONFIG4               | 2-ой                 |                                                                                              | 5-84         |
| MODE                                                                       | FILES                 | 2-ой                 | Выбор операции с видеофайлами                                                                | 6-17         |
| NOISE LEVEL.%                                                              | CONFIG4               | 2-ой                 |                                                                                              | 5-84         |

| Функция        | Функциональная группа | Операционный уровень | Описание                                                                                      | См. страницу |
|----------------|-----------------------|----------------------|-----------------------------------------------------------------------------------------------|--------------|
| O-DIAMETER     | TRIG                  | 2-ой                 | Переключение между испытуемыми объектами с плоскопараллельными и криволинейными поверхностями | 5-48         |
| O-DIAMETER     | EVAL                  | 2-ой                 |                                                                                               | 5-48         |
| THICKNESS      | TRIG                  | 1-ый                 | Ввод значения толщины испытуемого объекта<br>для расчета истинной глубины дефекта             | 5-47         |
| THICKNESS      | EVAL                  | 2-ой                 |                                                                                               | 5-47         |
| ORIENTATION    | CONFIG1               | 2-ой                 | Конфигурирование инструмента для удобства работы правой/левой рукой                           | 4-16         |
| PARAM EDIT     | CONFIG4               | 2-ой                 | Включение и отключение настроек                                                               | 5-87         |
| PARAM MODE     | CONFIG4               | 2-ой                 | Выбор уровня пользователя: специалист или эксперт                                             | 5-87         |
| PARAMETERS     | FILES                 | 2-ой                 | Отображение текущих настроек значений<br>измерительного прибора                               | 6-16         |
| PARAM IN REPOR | FILES                 | 2-ой                 | Вставка регулировочных значений в отчет об измерениях                                         | 6-9          |
| PASSWORD       | CONFIG4               | 2-ой                 | Пароль для работы с прибором                                                                  | 5-87         |
| PHANTOM PRF    | CONFIG2               | 2-ой                 | Активация детектора шумовых эхо-сигналов                                                      | 5-58         |
| POWER SAVER    | CONFIG3               | 2-ой                 | Активация режима энергосбережения                                                             | 5-79         |
| PROBE DELAY    | RANGE                 | 1-ый                 | Компенсация задержки на соотв. линии преобразователя                                          | 5-10         |
| SOURCE/DEST    | FILES                 | 2-ой                 | Выбор расположения на карте памяти для<br>хранения видеофайлов                                | 6-17         |
| ADV DIRECTION  | DR                    | 2-ой                 | Заданное направление для автоматического заполнения матрицы координатной сетки                | 6-22         |
| DUAL           | RECEIVER              | 1-ый                 | Разделение приемника и импульсного передатчика                                                | 5-19         |

| Функция        | Функциональная группа | Операционный уровень | Описание                                                                                                                    | См. страницу      |
|----------------|-----------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------|
| VELOCITY       | RANGE                 | 1-ый                 | Скорость сигнала                                                                                                            | 5-10              |
| LAYER EDIT     | CONFIG3               | 2-ой                 | Регулировка толщины исследуемого слоя для<br>функции TOF (метод измерения по времени<br>прохождения сигнала) в группе LAYER | ı 5-80            |
| LAYER TYPE     | CONFIG3               | 2-ой                 | Переключение между режимами «один<br>исследуемый слой» и «10 исследуемых<br>слоев»                                          | 5-80              |
| PULSER TYPE    | CONFIG2               | 2-ой                 | Переключение между передатчиками с<br>генератором прямоугольного/пилообразного<br>импульса                                  | 5-75              |
| SERIAL NUMBER  | CONFIG1               | 2-ой                 | Отображение серийного номера прибора                                                                                        |                   |
| LANGUAGE       | CONFIG1               | 2-ой                 | Выбор языка                                                                                                                 | 4-13              |
| DEPTH          | BLOCK                 | 1-ый                 |                                                                                                                             |                   |
| TOF in LAYER   | CONFIG3               | 2-ой                 | Включение функции отображения времени прохождения сигнала ТОР в группе LAYER                                                | <sup>1</sup> 5-80 |
| REFERENCE TYPE | DGS                   | 1-ый                 |                                                                                                                             | 5-119             |
| REJECT         | RECEIVER              | 1-ый                 | Подавление нежелательных отображаемых компонентов эхо-сигнала                                                               | 5-19              |
| VOLTAGE        | PULSER                | 1-ый                 | Напряжение импульсного передатчика                                                                                          | 5-14              |
| X VALUE        | TRIG                  | 1-ый                 | Ввод расстояния между индексной точкой преобразователя и поверхностью наклонного преобразователя                            | 5-48              |
| X VALUE        | EVAL                  | 2-ой                 | Ввод расстояния между индексной точкой преобразователя и поверхностью наклонного преобразователя                            | 5-48              |
| TIME           | CONFIG1               | 2-ой                 | Установка времени                                                                                                           | 4-15              |

# 9.2 Декларация Соответствия ЕС

USM Go соответствует требованиям следующих директив EC:

• 89/336/EEC (электромагнитная совместимость).

Соответствие вышеуказанного продукта требованиям директивы EC 89/336/EEC обеспечивается соблюдением спецификаций следующих стандартов:

- EN 55 011:1998, Класс А, Группа 2;
- EN 61 000-6-2:2005;
- EN 61 000-6-4:2001.

Соответствие вышеуказанного продукта требованиям директивы EC 73/23/EEC, с изменениями, внесенными директивой 93/68/EEC, обеспечивается соблюдением спецификаций следующих стандартов:

• EN 61 010-1:2001.

# 9.3 Адреса производителя/сервисных служб

Ультразвуковой дефектоскоп USM Go произведен фирмой:

#### GE Sensing & Inspection Technologies GmbH

Robert-Bosch-Straße 3 50354, г. Хюрт ФРГ

Тел.: +49 (0) 22 33 601 111 Факс: +49 (0) 22 33 601 402

Ультразвуковой дефектоскоп USM Go изготавливается по самой современной технологии с применением высококачественных комплектующих. Специальный промежуточный контроль и система обеспечения качества производства, сертифицированная по DIN EN ISO 9001, гарантируют качество изготовления прибора и его соответствие самым высоким стандартам.

Тем не менее, в случае обнаружения неисправности прибора, отключите его и удалите аккумуляторные батареи. Сообщите о неисправности прибора в местное представительство сервисной службы GE Sensing & Inspection Technologies GmbH с указанием неисправности и ее характера.

Сохраните упаковку прибора на тот случай, если нельзя будет осуществить ремонт на месте и прибор необходимо будет доставить в сервисную службу.

По всем вопросам об использовании, обращении, эксплуатации и техническим характеристикам приборов вы можете обратиться в ближайшее представительство GE Sensing & Inspection Technologies GmbH или непосредственно по адресу:

GE Sensing & Inspection Technologies GmbH

Центр сервисного обслуживания Robert-Bosch-Straße 3 50354, г. Хюрт Германия

#### или:

Postfach 1363 50330, г. Хюрт Германия

Тел.: +49 (0) 22 33 601 111 Факс: +49 (0) 22 33 601 402

#### Франция

GE Inspection Technologies SCS 68 Chemin des Ormeaux 69760, г. Лимоне Франция

Тел.: +33 0472 179 220 Факс: +33 0478 475 698

#### Великобритания

GE Sensing & Inspection Technologies 892 Charter Avenue г. Канли-Ковентри CV4 8AF Соединенное Королевство

Тел.: +44 845 130 3925 Факс: +44 845 130 5775

#### США

GE Inspection Technologies, LP 50 Industrial Park Road 17044, г. Льюистаун США

Тел.: +1 717 242 03 27 Факс: +1 717 242 26 06

## 9.4 Соблюдение норм охраны окружающей среды

В данном разделе содержится информация по следующим аспектам:

- Директива WEEE;
- утилизация аккумуляторных батарей.

#### Директива WEEE (Директива EC об отходах электрического и электронного оборудования)

Компания GE Sensing & Inspection Technologies является активным участником Европейской инициативы по утилизации отходов электрического и электронного оборудования (Директива ЕС об отходах электрического и электронного оборудования (WEEE), или Директива 2002/96/EC).

Приобретенный измерительный прибор требует для своего производства добычи и использования природных ресурсов. Он может содержать опасные вещества, которые могут оказать отрицательное воздействие на здоровье человека и окружающую среду.

Во избежание распространения опасных веществ в окружающую среду и с целью ослабления давления на природные ресурсы мы соответствующие призываем вас использовать системы утилизации. Данные системы позволят без вреда для окружающей среды вторично использовать или переработать большую часть

материалов вашего измерительного прибора, вышедшего из строя.

Перечеркнутое изображение мусорного контейнера призывает вас использовать данные системы.



В случае необходимости получения дополнительной информации по сбору, вторичному использованию и переработке соответствующих материалов обратитесь в вашу местную или региональную организацию по приему отходов.

Посетите наш веб-сайт www.ge.com/inspectiontechnologies для получения инструкций по использованию рекомендуемых нами систем утилизации и дополнительной информации об этой инициативе.

#### Утилизация аккумуляторных батарей

Это изделие содержит аккумуляторную батарею, которую в Европейском Союзе нельзя утилизировать как несортированные бытовые отходы. Внимательно ознакомьтесь с технической документацией, прилагаемой к используемому типу аккумуляторных батарей. На батарее имеется этот значок, который указывает на возможное содержание в изделии кадмия (Cd), свинца (Pb) или ртути (Hg). С целью должной утилизации верните аккумуляторную батарею вашему поставщику или сдайте ее в соответствующий приемный пункт.

#### Что означает эта маркировка?

Батареи и аккумуляторы должны быть промаркированы (либо на батарее, либо на аккумуляторе, либо на их упаковке, в зависимости от размера батареи/аккумулятора) значком раздельного сбора. Кроме того, на батарее должны присутствовать химические обозначения токсичных металлов, если их содержание превышает определенные значения, как показано ниже:

- кадмий (Cd) более 0,002%;
- свинец (Pb) более 0,004%;
- • ртуть (Hg) более 0,0005%.



#### Риски и ваша роль в их снижении

Ваше участие является важной частью вклада в минимизацию вреда, который наносят батареи и аккумуляторы окружающей среде и здоровью людей. С целью должной утилизации вы можете вернуть этот прибор или батареи и аккумуляторы вашему поставщику или сдать их в соответствующий приемный пункт.

Некоторые батареи и аккумуляторы содержат токсичные металлы, которые представляют серьезную опасность для здоровья людей и окружающей среды. Если необходимо, маркировка на изделии может содержать химические обозначения, указывающие на наличие токсичных металлов: Pb – свинец, Hg – ртуть и Cd – кадмий.

• Кадмий может вызывать рак легких и предстательной железы. В число хронических заболеваний, возникновение которых может быть вызвано кадмием, входят повреждение почек, эмфизема легких и такие заболевания костей, как остеомаляция и остеопороз. Отравление кадмием также может стать причиной анемии, изменения цвета зубов и потери обоняния (аносмия).

- Все соединения свинца ядовиты. Он накапливается в организме, поэтому каждый тип воздействия очень опасен. Проглатывание или вдыхание свинца может вызвать серьезные повреждения внутренних органов. Возможно повреждение мозга, конвульсии, истощение и бесплодие.
- Ртуть образует опасные пары при комнатной температуре. Вдыхание паров ртути с высокой концентрацией может вызвать различные тяжелые симптомы. Среди возможных опасных последствий – хроническое воспаление ротовой полости и десен, изменение личности, нервозность, жар и высыпания на коже.

# 9.5 Директивы по переработке отходов

Краткий обзор





| № поз. | Код переработки/код материала                                     | Описание                                                                                                                                                                                          |
|--------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Литий-ионная батарея                                              | Литий-ионная батарея в батарейном отсеке на задней панели прибора                                                                                                                                 |
| 2      | Батарея ML1200                                                    | Резервная литий-ионная батарея на главной плате                                                                                                                                                   |
| 3      | Поликарбонат, Polymex, термопластичный<br>эластомер, латунь, медь | Верхняя и нижняя части крышки прибора, а также откидная крышка<br>батарейного отсека частично содержат сталь; верхняя часть крышки<br>прибора содержит впаянную латунную резьбу; клавишная панель |
| 4      | Магний, литой под давлением                                       | Верхняя водонепроницаемая крышка прибора, опорная стойка                                                                                                                                          |
| 5      | Синтетический каучук (СК)                                         | Рукава из СК для BNC-соединителей LEMO                                                                                                                                                            |

Материалы, подлежащие раздельной утилизации





| № поз. | Код переработки/код материала | Описание                                                                                                                                     |
|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Литий-ионная батарея          | Расположение – батарейный отсек; удалять, открыв откидную крышку полностью                                                                   |
| 2      | Батарея ML1200                | Расположение – главная плата; для удаления ослабить винты на задней панели прибора. Затем можно полностью снять нижнюю часть крышки прибора. |

Прочие материалы и компоненты













| № поз. | Код переработки/код материала                                         | Описание                                                                                                  |
|--------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1      | Главная плата, плата аккумуляторной батареи,<br>гибкая печатная плата | Печатные платы вмонтированы в корпус                                                                      |
| 2      | ТFТ-дисплей                                                           | Вмонтирован в верхнюю часть крышки прибора под стальной откидной крышкой, обернутой фольгой желтого цвета |
| 3      | Детали корпуса, из поликарбоната, Polymex;<br>клавишная панель        | Детали корпуса, клавишной панели                                                                          |
| 4      | Нержавеющая сталь                                                     | Крышка ТFT-дисплея                                                                                        |
| 5      | Сталь                                                                 | Защитная крышка на главной плате                                                                          |
| 6      | Магний, литой под давлением                                           | Верхняя водонепроницаемая крышка прибора, опорная стойка                                                  |
| 7      | Синтетический каучук (СК)                                             | Рукава из СК для BNC-соединителей LEMO, соединения из СК                                                  |

# Данные по переработке USM Go

| Код переработки/код материала            | Вес, прибл. (г)         | Описание                                                                                                  |
|------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|
| Материал/компоненты подлежат раздельной  | й утилизации и обращени | ю                                                                                                         |
| Литий-ионная батарея                     |                         | Батарейный отсек                                                                                          |
| Батарея ML1200                           |                         | Фиксатор батареи на главной плате                                                                         |
| Материал/компоненты возможно несовмест   | имы с некоторыми проце  | ессами переработки                                                                                        |
| Печатные платы                           |                         | Печатные платы внутри корпуса                                                                             |
| Детали корпуса из поликарбоната, Polymex |                         | Детали корпуса, клавишной панели                                                                          |
| ТFT-дисплей                              |                         | Вмонтирован в верхнюю часть крышки прибора под стальной откидной крышкой, обернутой фольгой желтого цвета |

| Код переработки/код материала                      | Вес, прибл. (г)       | Описание                                                 |
|----------------------------------------------------|-----------------------|----------------------------------------------------------|
| Экономически выгодные для переработки              | и материал/компоненты |                                                          |
| Нержавеющая сталь                                  |                       | Крышка ТFT-дисплея                                       |
| Сталь                                              |                       | Защитная крышка на главной плате                         |
| Магний, литой под давлением                        |                       | Верхняя водонепроницаемая крышка прибора, опорная стойка |
| Синтетический каучук (СК)                          |                       | Рукава из СК для BNC-соединителей LEMO, соединения из СК |
| Крепежные элементы, кабели, зажимы, винты и болты, |                       |                                                          |
| Общий вес с аккумуляторной батареей                | 850                   |                                                          |
| Особые примечания: нет                             |                       |                                                          |

# Технические характеристики 10

# 10.1 Технические характеристики приборов USM Go и USM Go+

#### Экран монитора

| Полезное пространство (Ш × В) | 108,0 × 64,8 мм, диагональ 5 дюймов        |
|-------------------------------|--------------------------------------------|
| Размер                        | 5 дюймов                                   |
| Разрешение (Ш × В)            | 800 × 480 пикселей                         |
| Контрастность                 | ≥ 300                                      |
| Яркость                       | ≥ 200 кд/м²                                |
| Диапазон отображения          | 14,016 мм (552 дюйма) для продольной волны |

## Дисплей

| Смещение времени пролета на<br>дисплее (временная задержка) | -15 3 500 мкс                                                                                                                   |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Задержка преобразователя                                    | 0 1 000 мкс                                                                                                                     |
| Скорость                                                    | 250 16 000 м/с                                                                                                                  |
| Частота повторения импульсов<br>(PRF)                       | Автоматически оптимизируемая 15 2 000 Гц<br>3 режима автоматической настройки: «Авто низк.», «Авто сред.», «Авто выс.»; вручную |

# Соединители

| Соединители преобразователя | LEMO-00, 2 ед., механическая защита от переполюсовки                |
|-----------------------------|---------------------------------------------------------------------|
| Интерфейс USB               | Соединитель Micro USB                                               |
| Служебный интерфейс         | Mini-RS232C, 1 шт., используется только при проведении обслуживания |

#### Память

Слот для карт памяти

#### Генератор импульсов

| Режим работы генератора импульсов                        | Генератор пилообразного импульса, по желанию заказчика: генератор импульсов прямоугольного сигнала |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Напряжение генератора (прямоугольный импульс)            | 120 300 В, с шагом в 10 В в пределах допуска 10%                                                   |
| Время начала/окончания импульса                          | Макс. 10 нс                                                                                        |
| Ширина импульсов генератора<br>(прямоугольный импульс)   | 30 500 нс, с шагом в 10 нс в пределах допуска 10%                                                  |
| Амплитуда импульсов генератора<br>(пилообразный импульс) | Низкий: 120 В, высокий: 300 В                                                                      |
| Энергия импульса (пилообразный импульс)                  | Низкий: 30 нс, высокий: 100 нс                                                                     |
| Демпфирование                                            | 50 Ом, 1000 Ом                                                                                     |

# Приемник

| Усиление при цифровом регулировании | Динамический диапазон 110 дБ, регулируемый с шагом 0,2 дБ                                  |
|-------------------------------------|--------------------------------------------------------------------------------------------|
| Аналоговая полоса пропускания       | 0,9 20 МГц                                                                                 |
| Эквивалентный шум на входе          | < 80 мкВ, по всей полосе пропускания                                                       |
| Время восстановления                | Целевое < 10 мкс                                                                           |
| Линейность на входе                 | 5% при измерении методом Е317, для выходных данных на всех 4 АЦП                           |
| Фильтры                             | Широкополосный<br>1–5 МГц<br>2 МГц, 2,25 МГц<br>4 МГц, 5 МГц<br>10 МГц<br>13 МГц<br>15 МГц |

# Стробы

| Независимые стробы | 2 строба А и В (инициирующим является строб А), строб С (дополнительно)   |
|--------------------|---------------------------------------------------------------------------|
| Выпрямление        | Положительная полуволна, отрицательная полуволна, полная волна, РЧ-сигнал |
| Позиция измерения  | Пик волны, по фронту, по Ј-фронту и первый пик                            |
|                    |                                                                           |
| Память             |                                                                           |
| Объем              | 2 Гб, карта памяти SD                                                     |
| Серии данных       | Структура данных UGO в формате ASCII                                      |
| Отчеты             | Изображения А-развертки в форматах JPG или ВМР                            |
|                    |                                                                           |

#### Условия эксплуатации Аккумуляторная батарея Время работы: 6 ч при условии полного заряда Метод зарядки (стандартный): с батареей внутри через зарядное устройство/адаптер питания Метод зарядки (дополнительный): через внешнее зарядное устройство Отображение уровня заряда: пропорциональный индикатор уровня заряда Зарядное устройство/ Универсальный блок питания 100 ... 240 В перем. тока, 50/60 Гц, соответствующий требованиям ССС, СЕ, UL, CSA и PSE адаптер питания Габариты (Д × Ш × В) 175 × 111 × 50 мм Bec 850 г вместе с аккумуляторной батареей Языки Болгарский, китайский, чешский, голландский, английский, финский, французский, немецкий, венгерский, итальянский, японский, норвежский, польский, португальский, румынский, русский, испанский, шведский

# Защита

| Стойкость к теплому влажному воздуху и повышенной влажности (при хранении) | 10 циклов: 10 часов при +60 +30°С, 10 часов при +30 +60°С,<br>с переходом между температурными режимами в течение 2 ч (507.4)   |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Стойкость к тепловому шоку (при хранении)                                  | 3 цикла: 4 часа при -20 +60°C, 4 часа при +60°C<br>с переходом между температурными режимами в течение 5 ч (503.4, методика II) |
| Стойкость к вибрации                                                       | Воздействие общего характера: 1 ч на каждую ось,<br>514.5-5 методика I, Приложение C, рисунок 6                                 |
| Стойкость к ударам                                                         | 6 циклов на каждую ось, ускорение 15 g, 11 мс, полусинусоида (516.5, методика I)                                                |
| При освобождении груза<br>(в транспортировочном контейнере)                | 514.5, методика II                                                                                                              |
| Падение при перемещении<br>(в транспортировочной упаковке)                 | 26 ударов, 516.5, методика IV                                                                                                   |
| Защитный корпус                                                            | Группа защиты IP67 в соответствии со стандартом IEC 529                                                                         |
| Диапазон рабочих температур                                                | 0 55°C                                                                                                                          |
| -20 +60°С, 1 сут. вместе с батареей                                                                            |
|----------------------------------------------------------------------------------------------------------------|
| ЭМС/ЭМИ: EN 55011, EN 61000-6-2:2001                                                                           |
| По ультразвуковому воздействию: EN 12668, ASTM E1324, E317, ANSI/NCSL Z 540-1-1994, МШ STD 456624, МШ STD 2154 |
|                                                                                                                |

## Дополнительные возможности

| Метод AWS          | Калибровочный инструмент AWS, согласно Своду правил по сварке конструкций AWS D1.1                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Метод DAC          | Калибровочный инструмент, 16 точек измерения, в соответствии с EN 1712, EN 1713, EN 1714, ASTM E164, ASME, ASME III, JIS Z3060 |
|                    | Метод ВРУ (TCG): динамический показатель 120 дБ, крутизна импульса 110 дБ/мкс                                                  |
| Метод DGS:         | Калибровочный инструмент АРД (DGS) в соответствии с: EN 1712, EN 1713, EN 1714,<br>ASTM E164                                   |
| Регистратор данных | Создание файла координатной сетки                                                                                              |
| 3G                 | Строб С                                                                                                                        |

| Метод SWP (генератор импульсов<br>прямоугольного сигнала) | Для оптимизации параметров генератора импульсов,<br>уставка по напряжению 120 300 В с шагами по 10 В,<br>уставка по ширине импульса 30 500 нс с шагами по 10 нс |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JIS, CN, DGS, BEA, Phantom-PRF                            | Tехнология Phantom-PRF для обнаружения шумовых эхо-сигналов,<br>вызванных многократными отражениями в материалах с низким затуханием                            |

JIS, CN, DGS, BEA

## 10.2 Спецификации согласно EN 12668

Спецификации согласно EN 12668 применительно к вашему измерительному прибору можно найти на компакт-диске, входящем в стандартную комплектацию.

## 11 АЛФАВИТНЫЙ УКАЗАТЕЛЬ

## Α

Масштабирование 4-3 Функция информации ABOUT 5-52, 7-4 Увеличенная А-развертка 6-29 Адаптер питания перем. тока 3-2 Функция выбора цвета развертки A-SCAN COLOR 4-17 Функция действия ACTION 4-20, 4-22, 6-3, 6-5, 6-7 Цвет А-развертки 4-17 Адреса производителя/сервисных служб 9-11 Фиксирование А-развертки 5-68 Диапазон регулирования 4-11 Функция заполнения цветом областей эхо-сигналов на А-развертке Функция прямого заполнения таблицы ADV DIRECTION 6-24 ASCAN FILL 5-71 Функция фиксации A-FREEZE 5-68 Функция настройки начальной точки строба A-START 5-23 Функция автоматического регулирования порога строба AGT 0-7, 5-Настройка строба A-THRESHOLD 5-24 28 Автоматическое управление коэффициентом усиления 5-84 Сигнализация 4-6, 5-77, 8-3 Функция выведения эхо-сигнала на 80% экрана AUTO80 4-8 Логика строба 5-74 функция автоматической корректировки угла AUTOANG 5-50 Сигнал предупреждения 5-64 Автоматическая калибровка AUTOCAL 5-31 Предупреждающий сигнал 5-77 Автоматическое управление коэффициентом усиления 5-84 Коррекция по амплитуде (АРД) 5-124 Автоматическая регулировка высоты строба 5-28 Угол наклона 5-46 Функция ширины строба А-WIDTH 5-23 Наклонный преобразователь 0-7, 5-45 Функциональная группа AWS D1.1 5-41 А-развертка 4-3 Испытание по AWS D1.1 в режиме ДАК/ВРУ 5-99 Функция заполнения цветом 5-71 Режим фиксации А-развертки 5-68, 5-69

Сохранение 6-9

Нормальный режим 4-3

## В

Функция настройки строба В REFERENCE 5-99 Функция ослабления донного сигнала 5-82 Ослабление донного сигнала 5-82 Аккумуляторные батареи Зарядка батареи вне прибора 3-8 Установка 3-4 Зарядка батареи внутри прибора 3-8 Батарея 0-8 Уход 7-2 Уровень заряда батареи 0-8 3-7 Зарядка батарей 7-3 Проверка уровня заряда 3-6 Индикатор уровня заряда 3-7 Предупреждение о низком уровне заряда 3-7 Уровень заряда батареи 0-8 3-7 Значок батареи 3-7 Функционирование батареи 1-2 3-4 Предупреждение батареи 0-8 Затухание донного эхо-сигнала (ВЕА) 5-82

Функция фиксации B-FREEZE 5-68 Функциональная группа BLOCK 5-51 Функция BOTTOM 6-24 Функция BRIGHTNESS (ЯРКОСТЬ) 4-18 Яркость 4-18 Функция настройки строба B-START 5-23 Функция B START MODE 5-27 Функция настройки строба B-THRESHOLD 5-24 Ширина строба B-WIDTH 5-23

#### С

Калибровка Двухэлементные преобразователи 5-34 Прямые преобразователи 5-30 Напоминание о калибровке 5-86 Уход 7-2 Зарядка Смена операционного уровня 0-3, 0-9 Уровень заряда батареи 3-6 Зарядное устройство/адаптер питания 3-2

| Зарядка                                              | Функция создания таблицы CREATE 6-24                        |
|------------------------------------------------------|-------------------------------------------------------------|
| Батареи 3-8                                          |                                                             |
| Состояние зарядки 3-8                                | D                                                           |
| Функция дистанционно-амплитудной характеристики по   |                                                             |
| промышленному стандарту Китая CNDAC 5-109, 5-111     | Функция DAC (ДАК) 0-7                                       |
| Отключение 5-116                                     | Добавление точек 5-97                                       |
| Включение 5-111                                      | Оценка эхо-сигнала 5-100, 5-107, 5-117                      |
| Предварительная и точная настройка 4-10              | Редактирование точек 5-96                                   |
| Функция введения кода CODE 5-52                      | Множественные ДАК 5-97                                      |
| Коды включения опций 5-52                            | Коррекция чувствительности 5-99, 5-106, 5-115               |
| Функция цвета COLOR 4-17                             | Регулировка 5-94                                            |
| Настройка фона отраженного сигнала COLOR LEG 5-49    | Выключение 5-95                                             |
| Запятая/Точка 4-14                                   | Включение 5-91                                              |
| Компоненты 9-22                                      | ДАК в соответствии с промышленными стандартами Японии 5-102 |
| Состояние функций                                    | Кривая ДАК                                                  |
| DAC/TCG (ДАК/ВРУ) 5-100                              | Удаление кривой ДАК 5-96                                    |
| Дистанционно-амплитудная характеристика по           | Регистрация (ДАК по промышленному стандарту Китая) 5-111    |
| промышленному стандарту Японии (JISDAC) 5-107, 5-117 | Регистрация (ДАК по промышленному стандарту Японии) 5-102   |
| Подключение                                          | Функция DAC/TCG (ДАК/ВРУ) 5-91                              |
| Зарядное устройство/адаптер питания 3-3              | Функция подавления DAMPING 5-17                             |
| Преобразователь 3-9                                  | Регистратор данных                                          |
| Функциональная группа управления CONTROL 6-20, 6-21  |                                                             |

| Выключение 6-29                                                 | Цветовая схема 4-16                                           |
|-----------------------------------------------------------------|---------------------------------------------------------------|
| Включение 6-29                                                  | Единицы измерения 4-14                                        |
| Регистрация данных (опция) 6-22                                 | Неисправности/ошибки 1-3                                      |
| Файл регистрации данных 6-22                                    | Определение угла ввода преобразователя 5-50                   |
| Активирование 6-25                                              | Определение точки ввода преобразователя 5-50                  |
| Создание 6-23                                                   | Функция скорости задержки (АРД) 5-124                         |
| Функция серии данных DATASET 4-23                               | Функция удаления серии данных DELETE DATASET 6-7              |
| Дата                                                            | Удаление                                                      |
| Формат даты 4-15                                                | ДАК по промышленному стандарту                                |
| Настройки 4-15                                                  | Китая 5-117                                                   |
| Функция формата даты DATE FORMAT 4-15                           | Кривая ДАК 5-96                                               |
| Приращение в дБ 5-6                                             | Опорный сигнал АРД 5-129                                      |
| Функциональная группа оценки уровня опорного сигнала в дБ. dВ   | Директория 6-4                                                |
| REF0-7, 5-38 Функция установки шага дБ dB STEP 5-7 шаг в дБ 4-5 | Файл 6-7                                                      |
| Десятичный разделитель 4-14                                     | ДАК по промышленному стандарту Японии 5-107                   |
| Настройки по умолчанию 4-13                                     | Показания 6-27                                                |
| Дата и время 4-15                                               | Опорный сигнал 5-39                                           |
| Экран 4-16                                                      | Протокол испытаний 6-7                                        |
| Прибор 3-12                                                     | Удаление кривой ДАК (по промышленному стандарту Китая) 5-117  |
| Язык 4-13                                                       | Удаление кривой ДАК (по промышленному стандарту Японии) 5-107 |
|                                                                 | АРД 0-7                                                       |
|                                                                 |                                                               |

Основные настройки 5-123

Удаление опорного эхо-сигнала 5-129 Блокирование 5-127 Регистрация опорного эхо-сигнала 5-125 Запуск 5-123 Выключение 5-129 Функция кривой АРД DGS CURVE 5-124 Оценка АРД 5-119 Режим АРД DGS MODE 5-126, 5-129 Дифференциальное измерение 5-38 Директива 2002/96/EC 9-13 Директива 89/336/EEC 9-11 Функция указания директории DIRECTORY 4-12 Экран Яркость 4-18 Сетка 4-18 Цветовая схема 4-17 Настройки 5-70 Функция задержки отображения DISPLAY DELAY 5-13 Задержка отображения 5-13 Фиксация отображения 5-68 Диапазон отображения 5-10, 5-11

Экран дисплея 4-3 Отображение А-развертки 4-3 Нулевое отображение 5-13 Отображение названия серии данных 4-22 Функция действия регистрации данных DR 6-22, 6-23, 6-25, 6-28, 6-29 Функция регистрации данных толщины DR THICKNESS 6-24 Функция просмотр зарегистрированных данных DR VIEW 6-29 DUAL (разделение генератор импульсов - приемник) 5-20

## Ε

Оценка эхо-сигнала 5-25, 5-29, 5-53 Сравнение высоты эхо-сигналов 5-38 Функция ЕСНО МАХ 5-72 Максимальная амплитуда эхо-сигнала 5-72 Диапазон значений для строба 5-22 Редактирование Точки ДАК 5-96 Файл заголовка 6-14 Файл заметки 6-11 Протокол испытаний 6-6 Функция EFF. DIAMETER (АРД) 5-124 Обозначение пустой ячейки EMPTY 6-27 EN 12668 10-11 Завершение 3-12 Функция ENERGY 5-15 Увеличение изображения данных 5-62 Функция ввода ENTER 4-21, 6-4, 6-18, 6-20 Функция огибающей кривой ENVELOPE 5-83 Огибающая кривая 5-83 Совместимость с нормами окружающей среды 9-13 Сооблюдение норм охраны окружающей среды 9-13 Сообщения об ошибках 5-127 Режим оценки EVAL MODE 5-73 Оценка дефектов 1-6

## F

Заводская установка по умолчанию 3-12 Быстрый протокол (FAST REPORT) 6-3 Характеристики прибора 1-11

Файловые операции 8-3 Функция FILENAME 4-20, 4-22, 6-3, 6-5, 6-8, 6-17, 6-20, 6-23, 6- 25, 6-28 Точная и предварительная настройка 4-10 Программное обеспечение 7-4 Первый опр\ерационный уровень 4-9, 5-3 Измерение первого пика FIRST PEAK 5-25, 5-54 Флажок 6-19, 6-21 Измерение по фронту FLANK 5-25, 5-54 Класс дефекта 5-42 Чувствительность к дефектам 5-42 Расчет положения дефекта 5-45 Функция кадра FRAME 6-21 Фиксация 0-7, 5-68 Режим фиксации FREEZE MODE 5-68 Функция частоты FREQUENCY 5-19 Двухполупериодный режим FULLWAVE 5-20 Раздел FUNCTION 1 5-9 Раздел FUNCTION 2 5-9 Функциональные группы 4-4

| Переключение 0-9                           |
|--------------------------------------------|
| Функциональные клавиши 4-7                 |
| Функции                                    |
| Активация 4-12                             |
| Отображение на экране 4-4                  |
| Первый операционный уровень (Основной) 0-3 |
| Первый операционный уровень (Опции) 0-4    |
| Клавишная панель 0-8                       |
| Навигация 0-9                              |
| Второй операционный уровень 0-5, 0-6       |
| Функции (в алфавитном порядке 9-2          |

## G

Усиление 0-8, 4-2, 4-5 Настройки 5-6 Управление коэффициентом усиления 5-84 Строб Настройка 5-22 Увелченное отображение 5-65 Начальная точка 5-23 Функциональная группа строба A GATE A 5-22

Функция HOLDfunc 5-9

Функция настройки логики строба A GATE A LO GIC 5-74 Функциональная группа строба B GATE B 5-22 Строб В Начальная точка строба B 5-27 Логика строба 5-74 Отслеживание строба 5-27 GB 11345 5-109 Функция GRID 4-18 Таблица 6-22 Выключение 6-29 Включение 6-29

## Η

Функция заголовка в протоколе HDR IN REPORT 6-15 Заголовок 6-13 Редактирование заголовка HEADER EDIT 6-13 Заголовок файла Создание файла заголовка 6-13 Редактирование 6-14 Прикрепление к протоколу испытаний 6-15

Функции клавишной панели 0-8

Функция быстрого перехода НОМЕ 4-8,4-11

Функция включения изображения в протокол IMAGE IN REPOR 6-9 Угол ввода преобразователя 5-50 Ориентация прибора 4-16 Настройки прибора 4-19 Интерфейсы 8-2

## J

Функция измерения по J-фронту J-FLANK 5-25, 5-54 Функциональная группа JISDAC 5-102, 5-106, 5-116 Выключение 5-106 Включение 5-102 Джойстик Блокировка 5-76

#### Κ

Комбинации клавиш 4-8 Увеличение строба 0-7 Функция увеличения строба 5-65

#### L

Функция языка LANGUAGE 4-13 Язык 4-13 Раздел LARGE 5-62 Сигнал 5-64 Уровень 5-80 Светодиод зарядного устройства/адаптера питания 3-8 Светодиод на источнике питания 3-8 Отраженные сигналы 5-49 Ограничения при контроле 1-5 Функциональная группа линий LINE 5-116 Функция LOCK 5-7 Блокировка АРД 5-127

#### Μ

Функция увеличения строба MAGNIFY GATE 5-65

Создание 6-10

Редактирование 6-11

Техническое обслуживание 7-3 Проведение измерений 5-37 Материал Прибора 9-13 Испытуемый объект 1-5 Материалы9-22 Таблица 6-22 Выключение 6-29 Включение 6-29 Полоса измерений 4-5 Конфигурирование 5-59 Точка измерения (символ) 4-5 Заметка Создание 6-10 Редактирование 6-11 Сохранение 6-10 Функция редактирования заметок MEMO EDIT 6-10 Файл заметки Прикрепление к протоколу испытаний 6-12

Функция заметки в протоколе MEMO IN REPORT 6-12 Карта памяти Установка карты памяти 3-10 Извлечение 3-10 Настройка режима MODE 5-62, 6-18, 6-20 Экран 8-4 Множественные кривые АРД 5-128

## Ν

Навигация 0-9 4-7 Функция отрицательной полуволны NEG HALFWAVE 5-20 Примечания 6-10

#### 0

Диаметр объекта 5-48 Функция настройки наружного диаметра О-DIAMETER 5-48 Функциональная группа поправок OFFSET 5-98 Функциональная группа поправок OFFSET2 5-98 Функциональная группа поправок OFFSET 5-98 Принцип работы Переключение между операционными уровнями 0-9 Функциональные группы 5-2 Принцип работы Принцип работы операционных уровней 4-9 Руководство по эксплуатации 1-12 Время работы 0-8 Принципы работы 4-9 Обучение оператора 1-4 Средства управления оператора 4-2 Опции 1-10 Активация 5-52 Функция ориентации ORIENTATION 4-16 Предупреждающий сигнал 5-77, 8-3 Наружный диаметр 5-48 Краткий обзор Функции первого операционного уровня 0-3, 0-4 Функции второго операционного уровня 0-5, 0-6 Функции клавишной панели 0-8 Навигация 0-9

Функция значения коэффициента усиления POINT GAIN 5-96

Индикаторы уровня заряда батареи 0-8 Иконки индикатора состояния 0-7 Дефектоскоп USMGo 1-8

#### Ρ

Функция включения параметров в протокол PARAM IN REPOR 6-9 Параметры Сохранение 6-9, 6-16 Просмотр 6-16 Пароль 5-87 Изменение 5-88 Утеря 5-88 Сохранение 5-88 Защита паролем 5-87 Отмена 5-89 Функция функция измерения по пику 5-25, 5-54 Проникновение 5-15 Детектор шумовых эхо-сигналов 5-58 Функция обнаружения ЧПИ шумовых эхо-сигналов PHANTOM PRF 5-58 Воспроизведение 6-21 Функция выбора точки POINT 5-96, 5-97 Подключение 3-9

| Функция POINT POS. 5-97                                                   | Φ       |
|---------------------------------------------------------------------------|---------|
| Функция положительной полуволны POS HALFWAVE 5-20                         | Φ       |
| Клавиша питания 4-8                                                       | Д       |
| Индикатор уровня заряда 0-8                                               | Φ       |
| Функция энергосбережения POWER SAVER 5-79                                 | 38      |
| Энергосберегающий режим 5-79                                              | Ρ       |
| Источник питания 3-2                                                      | П       |
| Отключение 3-12                                                           | Φ       |
| Включение 3-11                                                            | Та      |
| Обязательное условие                                                      |         |
| Измерение 5-37                                                            | Ч       |
| Предварительные условия                                                   | Φ       |
| Предварительные условия испытаний 1-3                                     | Ге      |
| Обучение 1-4                                                              | П       |
| Измерение толщины стенок 1-5                                              | T       |
| Режим настройки частоты повторения импульсов PRF MODE 5-17<br>Принтер 8-4 | H<br>Pa |
| Печать 6-6                                                                |         |

Преобразователь

#### R

Радиочастота 5-20

ункция номера преобразователя PROBE# (АРД) 5-124 ункция угла преобразователя PROBE ANGLE 5-46, 5-50 анные преобразователя (АРД) 5-130 ункция задержки преобразователя PROBE DELAY 5-11 адержка преобразователя 5-11 ROBE DELAY (функция задержки преобразователя) 5-11 риведение преобразователя в соответствие 5-17 ункция названия преобразователя PROBE NAME (АРД) 5-124 аблица преобразователей Оценка в соответствии с АРД 5-130 астота повторения импульсов 5-15, 5-16, 5-17 ункция генератора импульсов PULSER 5-14 енератор импульсов 5-14 одключение генератора импульсов 3-9 ип генератора импульсов 5-75 апряжение генератора импульсов 5-14 азделение генератор импульсов - приемник 0-7, 5-20

Калибровка эхо-сигнала 5-31 Запись Кривой ДАК 5-92

| Функция диапазона RANGE 5-10, 5-11                                                                                                                                                                                                                         | ДАК по промышленному стандарту Японии 5-102, 5-111                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Номинальное значение                                                                                                                                                                                                                                       | Опорный эхо-сигнал в дБ при дифференциальном измерении 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Сварные швы 5-41                                                                                                                                                                                                                                           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Функция показаний READING 5-59                                                                                                                                                                                                                             | Опорный эхо-сигнал для АРД 5-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Отображение 4-5                                                                                                                                                                                                                                            | Видео 6-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Удаление 6-27<br>Сохранение 6-26<br>Функция вызова серии данных RECALL DATASET 4-22<br>Вызов<br>Серии данных 4-22<br>Названия серии данных 4-23<br>Настроек 4-21<br>Функция приемника RECEIVER 5-19<br>Подключение приемника 3-9<br>Частота приемника 5-19 | Регистрация опорного эхо-сигнала (АРД) 5-125<br>Функция выпрямления RECTIFY 5-20<br>Переработка 7-6<br>Функция REF ATTEN (АРД) 5-124<br>Функция установки размером опорного отражателя REF SIZE<br>(АРД) 5-124<br>Образец (ДАК по промышленному стандарту Китая) 5-109, 5-110<br>Опорный эхо-сигнал<br>Удаление опорного эхо-сигнала 5-39<br>Сравнение высоты эхо-сигналов 5-40<br>Регистрация 5-39<br>Опорный коэффициент усиления 5-42<br>Контрольные линии (ДАК по промышленному стандарту Китая) 5-116 |
| Регистрация                                                                                                                                                                                                                                                | REFERENCE ТҮРЕ (АРД) 5-124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Функция отсечения REJECT 5-21                                                                                                                                                                                                                              | Цветовая схема 4-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Отсечения 0-7                                                                                                                                                                                                                                              | Карта SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Остаточная толщина стенки 1-6                                                                                                                                                                                                                              | Иконка карты SD 0-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Напоминание 0-7                                                                                                                                                                                                                                            | Установка 3-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                            | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Напоминание о калибровке 5-86                     |
|---------------------------------------------------|
| Дистанционное управление 6-21                     |
| Ремонт 7-3                                        |
| Функциональная группа воспроизведения REPLAY 6-20 |
| Заголовок протокола 6-13                          |
| Функция сброса RESET 4-8                          |
| Сброс 3-12                                        |
| Повторный запуск 3-12                             |
| Восстановление 3-12                               |
| PH 5 -20                                          |

## S

| Информация по технике безопасности 1-2 |
|----------------------------------------|
| Сохранение                             |
| Пароль 5-88                            |
| Настройки 4-19                         |

Извлечение 3-10 Карта памяти SD 0-7 Второй операционный уровня 4-9, 5-4 Полуавтоматическая калибровка 5-31, 5-35 Коррекция чувствительности 5-99, 5-106, 5-115 Серийный номер 3-11 Адреса производителя/сервисных служб 9-11 Служебный интерфейс 8-3 Установки Настройка усиления 5-6 Настройка единиц измерения 4-14 Регулировка ДАК (по промышленному стандарту Китая) 5-114 Регулировка ДАК (по промышленному стандарту Китая) 5-105 Установки Отображение названия серии данных 4-22 Зашита 5-89

Вызов 4-21, 6-4 Сохранение 4-19 Функция отображения протокола SHOW REPORT 6-5 Боковое цилиндрическое отверстие 5-51 Иконки индикатора состояния 0-7, 4-6 Функция STOP6-19, 6-21 Сохранение Показаний 6-22

| Программное обеспечение 1-2, 3-11, 7-4                | Функция сохранения серии данных STORE DATASET 4-20 |
|-------------------------------------------------------|----------------------------------------------------|
| Затухание звука (оценка АРД) 5-128                    | Функция сохранения протокола STORE REPORT 6-3      |
| Коэффициент затухания звука 5-42                      | Сохранение 6-2                                     |
| Энергия звуковой волны 5-15                           | А-развертка 6-9                                    |
| Функция SOURCE/DEST 6-17, 6-20                        | Точка кривой ДАК 5-93                              |
| Увеличенное отображение строба 5-65                   | Заметки 6-10                                       |
| Технические характеристики 10-2                       | Параметры 6-9, 6-16                                |
| Технические характеристики по EN 12668 10-11          | Опорный эхо-сигнал 5-39                            |
| Скорость 6-21                                         | Опорный коэффициент усиления 5-43                  |
| Генератор импульсов прямоугольного сигнала 5-14, 5-75 | Заголовок протокола 6-13                           |
| Экран начала работы 3-11, 5-52, 7-4                   | Протокол испытаний 6-2                             |
| Начальное значение 4-11                               | Видео 6-17                                         |
| Начало работы 3-11                                    |                                                    |
| Начальная точка строба В 5-27                         | Т                                                  |
| Начальные точки стробов 5-23                          | Функция ТСG (ВРУ) 0-7                              |
|                                                       | Режим TCG/DAC MODE (ДАК/ВРУ) 5-95                  |
|                                                       |                                                    |

# 3 5-39 нт усиления 5-43 6-13 6-2

(ДАК/ВРУ) 5-95 Технические требования к проведению испытаний 1-4

| Температура 1-6                                              |    |
|--------------------------------------------------------------|----|
| Функция затухания звука в испытуемом объекте TEST ATTEN (AP, | Д) |

TEST ATTEN (затухание звука в испытуемом объекте) оценка АРД 5-128

Режим отображения А-развертки 4-3 Функциональная группа 4-9, 4-10 Функция TRANSFER CORR. (коррекция чувствительности) 5-99, 5-106, 5-115 Коррекция передачи (АРД) 5-128

5-124

Материал испытуемого объекта 1-5 Протокол испытаний 6-2 Удаление 6-7 Отображение 6-4 Печать 6-6 Сохранение 6-2 Функция установки толщины THICKNESS 5-47 Толщина 5-47 Теневой метод 5-20 Функция установки времени TIME 4-15, 6-21 Время 4-15 Функция TOF in LAYER (время прохождения сигнала в слое) 5-80 Режим TOF MODE 5-25, 5-53 Режиме отображения времени прохождения сигнала 5-29 Режиме отображения времени прохождения сигнала (символ) 5-54 Переключение

Коррекция передачи (ДАК по промышленному стандарту Японии) 5-99, 5-106, 5-115 Потери при передаче 0-7 Функциональная группа TRIG 5-45 Технология trueDGS 5-133

#### U

Файлы типа UGO 4-19 Прикладная программа UltraMATE 6-21 Установка единиц измерения 4-14 Функция обновления UPDATE 4-8 Обновления 7-4 Модернизирование 5-52 USB-интерфейс 8-2, 8-3 Функция установки шага усиления пользователем USER GAIN STEP 5-7

| ν                                                | x                                             |
|--------------------------------------------------|-----------------------------------------------|
|                                                  |                                               |
| Функция скорости VELOCITY 5-12                   | Функция настройки стрелы преобразователя 5-48 |
| Скорость 5-12                                    | Функция XTAL FREQUENCY 5-124                  |
| Номер версии r 5-52, 7-4                         |                                               |
| Видео                                            |                                               |
| Запись 6-17                                      | Z                                             |
| Просмотр 6-19                                    |                                               |
| Функция виртуального светодиода VIRTUAL LED 5-64 |                                               |
| Функция напряжения 5-14                          | Увеличение 4-3                                |

## W

| Толщина стенки 5-47                                   |
|-------------------------------------------------------|
| Измерение толщины стенки 1-5                          |
| Утилизация отходов 7-6, 9-14                          |
| Директива ЕС об отходах электрического и электронного |
| оборудования 9-13                                     |
| Сварное соединение                                    |
| Анализ 5-41                                           |
| Функция ширины WIDTH 5-16                             |
|                                                       |